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1. Introduction

Suppose we observe X = (X],...,Xp), where the X, are independent and
have positive densities
05 X;
fi(xile5) = By (65)t;(x;)e
with respect to Lebesgue measure on Xﬁ(: R]. It is desired to estimate

6 = (e],...,ep) where the loss in estimating ¢ by an estimate

8(x) = (87(%)5...,8,(x))

is sum of squares error loss

The parameter space will be taken to be the natural parameter space, i.e.

6.X.
@ = (0=(67,-..,0)): %f t.(x;)d ' ldxi<o for i=1,...,p} .
i

An important feature of an estimator § is its risk function (or expected
loss)

R(e,8) = E L(8,8(X)).

Two problems of major importance in this simultaneous estimation
framework are as follows. Problem I involves classification of inadmis-
sible and admissible estimators, and development of estimators offering
significant improvement upon standard estimators that happen to be inadmis-
sible. The most studied example of this is estimation of a multivariate
normal mean ¢ in which the usual estimator §0(5) = x is inadmissible if
p > 3 (Stein [18]).

Problem II is the problem of robust Bayesian estimation. In Bayesian

estimation a prior distribution (possibly improper) n(dg) on @ is



determined, and nominally one would want to use the Bayes estimator §ﬂ, de-

fined as that estimator minimizing the Bayes risk

r(r,8) = E'R(8,8) = [ R(8,8)w(de)
G

(or more generally minimizing the posterior expected loss). The determina-
tion of = is often very inexact, however, and hence it is important to con-
sider the robustness (with respect to the specification of =)of the estima-
tor selected. A general discussion of Bayesian robustness is given in
Berger [3], in which it is argued that good measures of robustness can be
obtained from R(g,g). If, for example, a minimax estimator §° is the
classical estimator for a problem, then if one restricts consideration to
estimators satisfying

%)

(1.1) R(g,8) < R(g,s") + C,

it will be ensured that r(r,s) 5_r(w,§°) + C no matter how badly the
prior distribution is misspecified. One can thus formally state as a
Bayesian robustness problem
Problem II*: Select the estimator § which minimizes r(n,§) subject
to (1.1).
At first sight it may seem that the'robustnESS‘requirehent
(1.1) is excessively harsh, but it wf]] be seen that (1.1) can often be
attained with surprisingly 1ittle sacrifice in Bayes risk (compared to
the nominally optimal but often nonrobust Bayés estimator Gﬁ). Constraints
other than (1.1) may sometimes be more natural. For example, in some
problems it may be more reasonable to require that R(9,$) 5_R(Q,§°)(1+C).
Surprisingly, Problem II* is also frequently crucial in successful
resolution of Problem I. This is because, if §° is ab"standard" estima-

tor which happens to be inadmissible, then the class of estimators better



than §0 is precisely the class of estimators satisfying (1.1) with C = 0.
In selecting among these improved estimators it seems inescapable that
prior information must be employed (see Berger [2] and [5]). Hence a rea-
sonable solution would be to determine a prior distribution = and solve
Problem II* when C =0 in (1.1).

Problem II* has been considered for various situations in Hodges and
Lehmann [13], Efron and Morris [11], Shapiro [15] and [16], Bickel [7] and
[8], and Berger [4]. Exact mathematical solution is unfortunately very
messy. For exémp]e, if X has a normal distribution with identity covari-
ance matrix, so that §°(§) = X 1is the usual estimator, the solution to
Problem II* can be typically shown to be a (generalized) Bayes estimator
with respect to a prior measure concentrated on a countably infinite
number of shells. It is an extremely difficult numerical problem to de-
termine the appropriate shells and their masses, and the resulting estima-
tor is an abominable mess. For this reason We will consider a slightly
modified version of Problem II*, one which is tractable mathematically
and yields reasonably simple estimators.

The starting point for the investigation will be Stein's unbiased es-
timator of risk, discussed for this setting in Hudson [14] and Berger [1],

which leads to the representation
(1.2) R(8,8) - R(9,8°) = E L8 ¢(X)]s

where ® 1is usually a nonlinear differential operator. The condition (1.1)
will clearly be satisfied if
(1.3) 9s(x) <C,

and so we can formulate

Problem II**: Select the estimator which minimizes r(n,g) subject to
(1.3).



The solutions to Problem II** seem to be very close to the solutions

to Problem II*, and their comparative simplicity makes them considerably
more attractive from a practical viewpoint.

Analysis in generality of any of the problems mentioned here is ex-
tremely difficult, and hence we will consider only various special cases.
Section 2 will develop the needed form of the representation (1.2). Sec-
tion 3 will present some results concerning Problem I, namely classifica-
tion of inadmissible estimators. Section 4 will give an explicit solution
to Problem II** when X has a spherically symmetric normal distribution.
The most important example of the theory in Section 4, namely the analysis
when = is a conjugate prior, is presented in Section 5. The resulting
estimators will be seen to have the rather startling property (for p > 1)
of having nearly optimal Bayes risk even when C is very small (i.e., aven
when the estimators are constrained to have risks which never exceed the
risk of the minimax estimator §°(§) = x by more than C). Section 5 can
be understood (for the most part) without having read the previous sec-

tions.

2. The Unbiased Estimator of Risk

We begin by stating some conditions on the densities fi(xi[ei) and
the estimators that will be considered. These are chosen for convenience
of application, and can undoubtedly be generalized. The following nota-

tions will be used throughout the paper:

p
(2.1) x« T XX XX xZps t(x) = n

p 5 t
Flxlo) = 1 filxilog) = elo)el)e™
1:
o) = Ly, = 2o, w3 = 2k
Y dy "V - ax; =07 X 3X;9% XJ



w(x) = (10,0 Pl), o

y(x) = 8(x) - §°(x).

~ ~ ~ ~

The estimator §0 is to be thought of as the "standard" estimator or estima-

tor under investigation, and ¢ as a competing estimator.

Condition 1:

(i) The %5 are (possibly infinite) intervals (ai’bi);

(ii) the functions ti are differentiable and Ee|v]og't(x)|2 < 3

(111) E 60 <= .

Condition 2: For i=1,...,p and all gec@, \F satisfies

(i) except possibly for (Xl""’Xi—]’xi+1”“’xp) in a set of prob-
ability zero, Yi(g) is a continuous piecewise differentiable function of

. a
X nd

%1%y
Tim {y; (x)t, (x;)e = 1im  {y;(x)t

>, D
X1—> i X_l—> i

(1) Eg[y§(§)] <= and E@|y§*)(g)| <.

Condition 3: For some positive differentiable functions m, and g,
(1) §°(x) = vlogm (x) - vlogt(x);
(i1) ~(x) = 2viog g(x).

Comment: If ﬂ(dg) is a (generalized) prior distribution on @ (the closure

of ® ) and the marginal density of X, given by

(2.2) m(x) = t(x)



is finite, then it is well known that the Bayes estimator of § is

(2.3) §"(x) = vlogm(x) - vlog t(x).
Furthermore, Berger and Srinivasan [6] show that any admissible estimator

must be of this form. Hence the restrictions in Condition 3 are natural.

Theorem 1. If Conditions 1, 2, and 3(i) hold, then

(2.4) R(g.8) - R(g,8")
=El2 ) v !

i=1

If, furthermore, Condition 3(ii) holds, then

(2.5) R(2:8) - R(2:6°) = E,L <ry & 901,
where
(2.6) 5 g(X) = v¥g(X) + vg(X)+vlog m_(X).

Proof. Although versions of this theorem are given in Hudson [14] and

Berger [1], we sketch the proof under this set of assumptions. Clearly

p
(2.7) R(2:8) - Rg:6") = T E,[2v; (X) (2(X)-0, )5 (X1
Now
(2.8)  Eglv;(X)e.]
b.
0.X. 1 0.X,
= [ ple) m [t.(x.)e 991 f vi(x)t:(x;)e.e ' Tdx, 1 dx..
.g.zﬁ - 51 NN a i YT 1jfi J
Jj#i

Observe, using Conditions 1 and 2 and the Cauchy-Schwartz inequality, that



(2.9) E [ (X ) 3§~ {Yi(x)ti(xi)} ]
1

= £l 00 0 dx Tog t, (X,)]

| A

9

el 0]+ (eI - 108 1, )° D2
< o

It further follows from Condition 2 that, with probability one, Yi(x)ti(xi)

is absolutely continuous on [c,d] for a; <cC< d < bs > which together with

(2.9) establishes the validity (with probability one) of the integration

by parts
d 04X; 0;%; x;=d
f Yi(§)ti(xi)eie dx; = Y1(§)ti(xi)e i
C Xi-C
d (1) . 8%
= [ Dvy P00 (v (¥t (%) Je 7 Tdx;

Letting ¢ > A, d > bi’ applying Condition 2(i) and inserting the result
in (2.8) gives the equality

£y lvi (031 = -E Ly i) 00T - £y () 5 109 £ 00)].

Applying this in (2.7) and using Condition 3(i) yields (2.4). Equation

(2.5) follows by a direct calculation. ||

3. Inadmissibility

Proofs of inadmissibility of various estimators §0 using theorems
analogous to Theorem 1 have been carried out in Hudson [14] and Berger [1]
in a rather haphazard manner. A systematic approach to the problem would
be to attempt to solve

(3.1) 9 g(x) =0



(see (2.6)) for g, and observe that if a solution g > 0 is found then

9 [9(x)1* = alg(x)1* 9 g(x) + ala-1)[g(x)1*2
1

Ne~1"10
~
«Q

—
o
~—
—~
X
~—
bt
nNo

ale-DIg) 2 T [T (x)1% < 0

i

I ~1 T
—

for 0 < a < 1. From (2.5) it would follow that the estimator
5(x) = 6°(x) + y(x) = 8%(x) + 2avlog g(x)

has smaller risk than §° for all e.

Unfortunately, closed form solution of (3.1) is possible only in cer-
tain special cases, such as when p = 1, when % has a spherically symmetric
normal distribution and §° is a spherically symmetric estimator, and when

the Xi are from Gamma distributions with equal degrees of freedom and

-1

p
- -1 2
vilogm (x) = (%1 seeeaXy ) + vlog ¢ iZ] X5).

We will consider the situation when p = 1 as an example.

Theorem 2. Let p = 1 and suppose that Condition 1 holds and that 80 is

as in Condition 3(i). Define

X b
- 1 _ 1
v7(x) g ﬁ;zyj'dy and ¥, (x) { RO dy,
and suppose for all xex = {(a,b) that either wl(x) <o Or wz(x) < .,
Letting Vs (i=1 or 2) be the finite function chosen, assume further that

. 2
(i) Ee[ é%-log wi(X)I < ® , and

.. . d . ox d
(i1) 11m{t(x)eex - Tog v.(x)} = lim{t(x)e " 5= logy.(x)} = O.
%>a dx i wob dx i

Then ¢° is inadmissible and a better estimator is given by



(3.2) s(x) = 6°(x) + v(x),

v(x) = 20 —dgx— Tog v (x)

and 0 < o < 1.

Proof. We begin by verifying Condition 2 of Section 2. Only the condi-

tion Eely'(x)l < o is not immediately obvious. But
' 2
v (x) = - -2]0;\( (x) - v(x) ad; Togm, (x),
)

Elv' (0] = 2 Ey° (01 + {[Ev (OIME( o Togm (x)2]31/2.

2
A1l terms are finite by assumption {the finiteness of Ee(-é% 1og|n0(X))
following from Condition 1 (ii) and (iii)).
Theorem 1 thus applies, and it is easy to check that 8y, (x) = 0.

The discussion preceeding this theorem completes the proof. ||

Comment: Because m, is continuous and positive, Vs will be finite for
all a < x < b if it is finite for any x. Hence only the behavior of mo(x)

at the boundaries of X is relevant to the admissibility problem.

Example. Suppose X has a Gamma distribution, i.e. has density on
Z = (Os“’)
- ao-1_6X
f(x[e) = (-8)"x" "e”"/r(a).
(The natural parameter space here is ® = (-=,0). It is easy to transpose
the results below to the more common parameterization in which @ = (0,»),

a-1

however.) Clearly t(x) = x~ ', so that Eel-é% Tog t(X)l2 < o 1if and only

if o =1 o0or oa>2. Henceforth assume that o > 2.
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Suppose, now, that
kpy (1+0(1))  as  y -0
(3.3) my(y) =
koy*(140(1))  as  y=>e
If r < 1 then ¥ is finite, while if s > 1 then vy is finite. In either
case it is easy to verify the remaining conditions needed to apply Theorem
2, and hence (3.2) gives a better estimator.

Observe that the possible inadmissibility of 9 due to the behavior
of mo(y) at = is of little practical concern since for reasonable (generali-
ized) priors (see 2.2) m(y) will not be blowing up at «. Inadmissibility
due to the behavior of mo(y) near zero is of concern, however, as can be
seen by consjdering the prior distribution

Tr(de) = ———2—“2‘—d9 .

m(1+67)

A simple calculation gives

_ ZYOL a ye de
nly) = ey [ (-e)e 1+62)
2 nae—n
= dn
7T (a é y2+n2
Clearly
. _ o 2r{a-1) 2
;lg m(y) o R o el
and

m(y) = —2% (1+o(1)) asy = .
my

Hence (3.3) is satisfied with r = 0 < 1, so the Bayes estimator with re-

spect to m, given by 8"(x) = viogm(x) - vlogt(x), is inadmissible.

(Although m is proper, it can be checked that the Bayes risk for the
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problem is infinite. Hence §" is being defined as the estimator minimiz-
ing the posterior expected To0ss.)

It can be shown that if n has o moments, then m(y) = O(ya_])

as y -~ 0,
which (since o > 2) means that r will be greater than 1 and the inadmis-

sibility theorem will not apply.

Comment: Once &° has been determined to be inadmissible, the problem of
selecting a good improvement still remains. As mentioned in the introduc-
tion, one possible method of tackling this problem is to solve Problem II**
with C = 0. A second method which might have some potential is to exploit
the relationship between (2.6) and diffusion processes (first observed by
Brown [9]). The operator & happens to be the infinitesimal generator of
the diffusion process on X which has local mean u(x) = v]oglno(g) and
local covariance matrix 2I. It will typically be the case that the diffu-
sion is transient if and only if © g(x) = 0 has a suitable positive solu-
tion, i.e. if and only if the estimator §O is inadmissible. Furthermore,
if Xt denotes a (random) sample path of the (transient) diffusion and EX

stands for expectation when the process starts at x at time t = 0, then

for appropriate positive functions h the function

o (x) = E, [ hix )t

O~ 8

will be finite and satisfy ® gh(f) < 0. Thus a large class of improved
estimators

5(x) = 6°(x) + 2vlog g, (x)

could be produced, and perhaps h could be chosen to accommodate the avail-
able prior information. Formidable difficulties are unfortunately also

encountered in this approach to the problem.
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4. Ristricted Risk Bayes Rules

Using (2.4), (2.5) and (2.6), and providing Conditions 1 and 3(i) hold,
we can formally state Problem II** as that of minimizing r(r,§) among all

estimators satisfying Conditions 2 and 3(ii) and also satisfying
(4.1) 5.9(x) = vg(x) + vg(x)-vlogm (x) - 7 g(x) <0

or, equivalently,
(4.2)  gy(x)
P p

=2 L 700 42 T v (0 g Tog my(x) +

vilx) - c <o
1 X .

p
L

i=1 i i=1
This is basically a calculus of variations minimization problem with side
constraints, and the answer will typically be that the solution, §C, must
be a smooth blending of the unconstrained minimizing estimator §" and
estimators arising from solutions to @(:9(5) =0 (or £§X(§) = Q).

The major problem in determining §C is that of solving the elliptic
partial differential equation 5%9(5) = 0. Indeed, as discussed at the be-
ginning of Section 3, this can only be solved in closed form for certain
special cases. In this section we will analyze the spherically symmetric
normal situation.

If X has a p-variate normal distribution with identity covariance

matrix, its distribution is as in (2.1) with

2 2
t(x) = e and g(e) = (zﬂ)'p/ze'|§| /2

~

Suppose now that the prior distribution =(dg) is symmetric about a point

po= (u],...,u )s so that the marginal density of X will be of the form

P
(4.3) n(x) = h([x-y]).

The Bayes estimator for this problem can be written (see (2.3))
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=
L5 =

. 2
(4.4) §T(x) = x + ZUXD)
h(]x-ul?)

L3 =

2

In trying to solve Problem II**, it is natural to restrict attention
to estimators which are spherically symmetric about u, i.e. to estimators

of the form

(4.5) 8(x) = x = o(|x-u] %) (x-n).

~ ~ ~ o~

To put this in the general framework of section 2, we can define

(4.6) () = % 9(x) = o(|x-u] ).
! 2
o(xl?) = - UERL) () = (a0,
o (|x-ul®)
so that an estimator of the form (4.5) can be written

(4.7) 5(x) = 6°(x) + y(x) = 6°(x) + 2vlog g(x),
which is the form assumed in (2.1) and Condition 3(ii). For convenience,
we will denote the corresponding quantities for §ﬂ by g"(x), o"(x), and

v"(x), and note that

2
2h -
(4.8) Pﬂ(ﬁ) = - (Ix EI;
h(|x-u[%)
A simple calculation using (4.6) shows that ££g(5) in (4.1) can be written
(letting r = Ig—glz)
(4.9) S.o(r) = 8.9(x) = 2p¢ (r) + drg'(r) - 7 ¢(r)

= 24 (r)[-2po(r)Hre?(r)-aro' (r)-cl.

The following lemmas present the solutions to the differential equation

(4.10) | EE ¢(r) = 0.
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Lemma 1.
(i) If C =0, positive solutions to (4.10) exist for all r > 0 only
if p > 2, and are given (up to a multiplicative constant) by

y + p(2P)/2 for x>0
(4.11) “’c,x(‘”) =

1l
8

1 for 2
(We will use A to index the solutions.)
(ii) If C > 0, the positive solutions to (4.10) are given (up to a

multiplicative constant) by

r(z_p)/4[KIv( 1 /EF)+Kv( £/Cr)] for A>0
(4.12) 9c,,(r) =
r(Z-P)/4IV(%_/EF) for A= |,

where v = [p-2|/2 and I, and K ~are the modified Bessel functions determin-
ed by

I (r) = e~ 1MV/2; (reiﬂ/z)a

v \%

K (r) = eiﬂv/Z[ein(v+])/2I (r)-Y (reiﬂ/Z)]

™
v 2 v v >
where Jv and YV are the Bessel functions of the first and second kind re-

spectively and of order v.

Proof.  When C = 0, (4.10) can be solved explicitely, yielding (4.11) as
solutions. For C > 0, making the transformation w(r) = rp/4¢(r) in (4.10)

results in the equivalent differential equation

" =C_pp_ 4y L =
wr) + [ gl - (5 -1 7 () = 0.
The positive solutions to this equation are known to be of the form

wk(r) = /rf AIv(%r/CF)+Kv(%-/CF)] for x> 0 and w_(r) = /r Iv(%~/CF ).

Transforming back gives the desired result. ||
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Lemma 2. The functions o (as defined in (4.6)) corresponding to the 9c

are
(i) when C =0 and p > 2, given by
2(p-2
for A >0
Arp/2+r o
(4.13) pC’A(P) =
0 for A=« ;

(ii) when C > 0 and p > 1, given by

4

_ _‘/_-C— [}\I\)'F-l(%/—C?)_K\)‘i'](% /EF)] for v s 0
/r [AIV(%wﬁiq+Kv(%va)] -
(4.14) (r) = _
"Car < _/C Eyili%if?fz for A = o 3
v 1 (%4/Cr)
\ \Y)

(iii) when C > 0 and p = 1, given by the expressions in (4.14)

minus 2/v.

Proof.  The results follow from straightforward calculation and the fact
t 1 _ K
that AL (y) + K (v) = AL 4 (y) = K (v) + 5 DI ()1 ]
Some knowledge of the behavior of the functions PC. will be needed

and is given in the following lemma.

Lemma 3.

(1) oc A(r) is decreasing and continuous in A and hence
)

DC’A(Y‘) < DC,A(P) < pcgo("')-

Furthermore
( 0 if C=0andp<?2
2(p-2)/v if C=0andp>2
pC,O(r) - ﬁ JC / if C>0andp =1
< _Kﬁilgéiiéfz if C>0andp>1 ,
\/F K, (% vCr)
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( 0 if C=0
/C .
o~ (r) = ﬁ - —=coth(%/Cr) if C>0,p-=1
C’OO }/Y_" <
I ..(37Cr)
-£_C__———\)+]2__ if C>0,p>1.
K v I (1/Cr)
V

(ii) As a function of r, oc A(r) has bounded derivatives on compact
sets in (0,=).
(iii) As r - 0,

(a) when p =1

( (1- %@ )-§g (1+0(1)) if A # %—and A< w
pea(r) =4 - g (1)) it A=l
\-éumun Pfoa=e g

-4 .
Fﬁzﬁ;;‘(]+0(])) if ‘l <

pC,)\(r)
| - § (1+0(1)) if oa=e

w

(c) when p >

ﬁ%ﬁwuun) if A <o

pch(r)

- 55 (0(1))  if 2=

Proof. The fact that Pe A(r) is decreasing in A follows from simply dif-
ferentiating with respect to A in (4.13) and (4.14) and observing that the
derivative is negative. The remainder of the lemma follows from well known

properties and asymptotic expansions of the modified Bessel functions. ||
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In general, Iv and Kv are expressible in closed form for half integer
v (corresponding to odd dimensions p). In all cases, tables of Iv and Kv
exist for small and moderate integer and half integer values of v (i.e. all
p of moderate size), so one need not resort to numerical work to evaluate
the PC,"

The function pC’O(Y), being the largest solution to (4.10), will be
of particular interest. The following lemma gives some indication of its
behavior for C > 0 and p > 1. (The C = 0 and p = 1 cases were dealt with

in Lemma 3(i).)

Lemma 4. IfC>0
(i) and p = 3, then

/C 2
pp alr) = = + =
C,O }/F r
(ii) and p = 5, then
V/C 4 4
pp plr)y = — + +
C,0 /T (2+/E7)
(iii) and p = 2, then
? cos (t/Cr/2) dt
op alr) = 20 (& +1)%/%
C,0 r ? cos (t/Cr/2) dt
0 (t +1)1/2

(iv) then as r + o ,

peolr = L v (o), (e3)(e1)

Jr r 2r/Cr

Proof. Simple calculation from known formulas and expansions for the

modified Bessel functions. ||
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At this point, the estimators (for which Conditions 2 and 3 hold)
which satisfy (4.1) (or @C(p(r) < 0) can be described. They are the estima-
tors corresponding to functions p(r) which

(i) are continuous and piecewise differentiable;

(1) satisfy oo (r) <o(r) <o o(r);

(i11) satisfy /ro(r) > 0 as r-> 0 when p = 1, and satisfy
€ 1
[ ro (r)dr < » when p = 2;
0

(iv) have the property that for any given point r,» corresponding to

which is the x_ such that p (r ) =po(r.), o(r) must be greater than or
0 C,Ao 0 0

equal to p (r) for all r > r_. The graph of po(r) can thus follow any
C,AO -0

curve pc,k(r), but if it departs from such a curve it must go up and to
the right.

The properties (i), (ii), and (iii) above are conditions which ensure
that the estimator (4.5) satisfies Conditions 2 and 3(ii) of Section 2.
(Property (ii) above is also, of course, needed to ensure that $E¢(r) < 0.)
When p = 1, the estimator will violate Condition 2(i) unless vr p(r) > 0
(ensuring continuity of the estimator as r = lx-uiz + 0). Forp>1, dis-
continuity at r = 0 is allowed by Condition 2(i). The moment requirements
in Condition 2 can be shown (using Lemma 3(iii)) to be satisfied for the
estimators corresponding to pc’m(r) and pC’O(Y) when p > 3, and hence by
o(r) satisfying properties (i), (ii), and (iv) above. Property (iii)

above ensures satisfaction of the moment requirements in Condition 2 for

p=1andp=2. (It is possible to show using Lemma 3(iii) that, when
p=1, only °C,x/4 satisfies Condition 2, while when p = 2 only oC. e sat-

isfies Condition 2.)
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We now proceed with the theorem formalizing the nature of the solution
to Probiem II**, let §C denote the "optimal" estimator, i.e., the estimator
which minimizes r(x,8) among all spherically symmetric (about‘g) estimators

satisfying Conditions 2 and 3 of Section 2 and for which i% (r) < 0 (which

implies that R(9,§) E,R(9,§O) +C=p+ C). Also, let oc and 9 be defin-

ed, as usual, by

(4.15) oclr) =

|
1
S
h=al
o
~~
-~
o
~
-
o
—
—
g
-

Theorem 2. If pc(r) # pﬂ(r) for all rela,b] (a >0, b < » ), then it

must be true that pC(r) = o A(r) for some A and all a < r < b.

Proof. We will consider the case pc(r) <p"(r) for a < r < b. The other
cases are dealt with by similar arguments.To argue by contradiction, sup-
pose there does not exist a A such that pC(r) = pC,A(T) for all a < r < b.
Let A* be such that pC,A*(b) = pC(b). (Such a A* must exist by Lemma
3(i), since it can be shown that pC(r) must be between pC’m(T) and pc’o(r)

to satisfy £b¢c(r) < 0.) Define

d= sup {r:p (r)#opa(r)} .
a<r<b C.n* C

By continuity, a < d < b. Next, choose € > 0 so that d - € > a and

pC(r) < pC,k*(r) <p"(r) ford - e <r <d. (It can be shown that if
pC(P]) 3_pC’A*(P]) for some d - € < ry < d, then it cannot be true that
Et¢c(r) < 0 for all ry <r< d.) Without loss of generality, it can be as-
sumed that b and € were chosen so that |pé(r)| <ky<w ford - e <r<d.
Also, let

ko = | sup pp Lx(r)]
2 a<r<b Cs2
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(which is finite by Lemma 3(ii)). Observe that,for any k 3_2(k]+k0) and
any point roes(d— §~,d), the function y(r) = oc A*(ro) + k(r—ro) must
intersect pC(r) at some point d - € < ry < ry (Choose g to be the first

point of intersection if several exist.) Finally, define

pc(r) for r<ryandr>d
o(r) =< yv(r) for ry<r <r,
oc A*(r) for rj<r<d

Now it is clear that the estimator

5(x) = x - 3(]xu|%) (x-)

will satisfy Conditions 2 and 3 of Section 2 if §C

does. To verify that
£t$(r) < 0 (where 5(r) = -43'(r)/4(r)), it is only necessary to check (see

(4.9)) that

£(r) = -2py(r) + rp?(r) - dry*(r) - C<0

for rpsrsr (By assumption on °c and definitionof oc A*,§>Cd~>(r‘) <0

o°

for r <1 and r Z'ro.) From the definition of y(r) it is clear that
e(r) = -2plog ,alry)tk(r-rg)]

#rlo | wlrg 42k lry ) (rv b (ror )20 - ark - .

Observe, however, from (4.9) and the fact that Et¢c A

(r) = 0, that
-2 (r) =-ro2 (r)+dro. .(r)
Pre.axtTo oC,a*\o oPC,a*\Tg/>
and hence
_ 2
g(r) = -2pk(r-ry) + (r-rodoc x(rg) + 2k(r-rodoc ,u(r;)
+ rkz(r—r )2 + 4r o0& _(r ) - 4rk
0 oC,a*'' o :

A moments reflection reveals that the k] and k2 which work for a given €
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also work for all smaller € . By choosing = small enough we can ensure

that r > Zr, for ry < r < rgs and hence that

4ropc’x*(r0) - 4rk < 4r pC,A*(TO) - 2r k

0 0
< 4rok2 - 4r0(k]+k2)
= —4r0k1.
Thus
2 2
g(r) 5_(r—ro)[-2pk+pc’x*(ro)+2kpc’X*(ro)+rk (r—ro)] - 4rok].

As. € > 0, the expression in square brackets above stays bounded, but

(r-ro) -+ 0 when ry <P <. Hence £(r) < 0 for rpsrsr and small

0 0

enough & , completing the argument that p(r) indeed satisfies it&(r) < 0.
To complete the proof, we must show that r(n,§) < r(n,§c), contradict-
ing the supposed optimality of §C. But it is well known that, for any es-

timator §,

r(ﬂ,@) = r(ﬂaéﬂ)

~ ~

E"y (X)-y" (X) |2

E"¢ Lo (| Xeu] 2)-0"(Xeu | 272 %-u [P,

where m indicates that the expectation is with respect to the marginal dis-
tribution of X. From this and the fact that, by construction, p(r) is
closer to p"(r) than pc(r) is to p"(r) for ry<r< d, the desired conclu-
sion follows. ||

It will typically be the case that
(4.16) p"(r) = Ky *+ kor + o(r)

as r - 0, where k1 > 0 and k2 # 0. (This can be seen by considering (4.8)
and expanding h(r) in a Taylors series,for typical =.) When this is true,

it can be seen from Lemma 3(iii) that if oc A(r) is positive as r > 0, it
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blTows up at such a rate that pC(r) (the optimal solution) cannot equal
pc,k(r) for sufficiently small r. Hence, by Theorem 2, pC(r) must equal
o"(r) on some interval (O,b]). (When this is the case and (4.16) holds,
it is easy to verify that PC will satisfy Conditions 2 and 3 - see the
discussion after Lemma 4 - so no technical difficulties will be encounter-
ed.) Intervals in which pC(r) equals some pc,x(r) and equals o"(r) will

then alternate. The structure of p.(r) will thus usually be of the follow-
C

ing form: for some numbers 0 = ag < b] <ap by <,
i
o (r) for a, <r<b.,
<r=<a

pC,Ai(r) for bi

where the A; are determined by the continuity constraints pﬂ(bi)= Pe.y (bi)'
>

The at first sight formidable task of finding the optimal sequences {ai}
and {bi} is greatly simplified by the observation that, after bi (and
hence Ai) have been selected, the subsequent a; can only be a point for

which TN (ai) = p"(ai). There will almost never be more than one or
>
two points at which TN (r) and o"(r) are equal for r > bi’ so the pos-
>

sibiTities for the a; are very Timited. Furthermore, it will often happen
that o"(r) > pC’O(P) for r > k, in which case pC(r) must equal pC,O(P) for
r > k. (This follows from Theorem 2 and Lemma 3(i).) Hence there will
typically be very few bi (and ai) (i.e., very few switches between p" and
the pC,k)’ so that numerical minimization of the Bayes risk of estimators
satisfying (4.17) over the bi (and ai) is quite feasible. This is partic-
ularly true because of the following relatively simple formula that can be

used for the Bayes risk of §C.
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Lemma 5. If

X) = x - pC(Iz-glz)(§-g),

and p. is as in (4.17), then

s
(4.18) r(m.e®) = p+-L I % [Zb?/zh'(b )-2a2%h" (2, ;)
i>1
R (h' ()2 p/2 i (r)r(P-2)/2
_ | dr| +[ ch d
g —h<ﬂ—r Y‘] g r)r r

i-1

where h([x-pjz) is the marginal density of X and S_ is the surface area

~

of the unit p-sphere given by Sp = an/z/r(p/Z).

Proof. From (2.5) and the observation that R(Q,§O) = p, it follows that

¢

it

r('ﬂ'gs

T 4
p+E EQ[ W 8 ge(X)]

p+@ggﬁgﬁggpl

Making the transformation r ]x-u|2, noting that 8g(x) = @Cg(§) + %-g(g),

and using (4.9) gives
Cy o nw f 4 rx C 1 ¢ o (p-2)/2
= + = 1 .
r(m,8”) = p + é W [39C¢C(Y‘) i ¢C(Y‘)]h(Y‘)( QSPY‘ dr)
Now, from (4.17) and (4.8) it follows that

6 (r) = /hlr) for a,

| A
=
A
o

| A
~
| A
)

¢C’Ai(r) for b

Furthermore,

1]

Beo,(r) + 5 6 (r) = 2pg’(r) + dro*(r)

_ph'(r) L 2rh'(r)  r[h'(r)?
AT AT [h(r)1¥/%
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while, by definition, bc by (r) = 0. Hence
>

b.
S 1 ! I ! 2 )
r(ﬂ5§c) = p{-zg. z g4 I [tpg(ﬁg) + ZFz(ﬁ;) _ r(?hgiiiz.Jh(r)r(p‘z)/zdr

- i-1

a.
+ f1 Ch(r)r(pnz)/zdrg
b.
i

Integrating by parts gives

b. b. b.

i j i
f h“(r)rp/zdr = h'(r)rp/2 - f h'(r) g_r(p—Z)/Zdr )
%i-1 %1 %4

which when used above gives the desired result. ||

5. An Example

In this section we present perhaps the most important example of the
theory of the preceeding section, namely the analysis for conjugate priors.
(Although conjugate priors are usually not robust, that is of no concern
here because of the risk restrictions employed.) Thus we assume n(dg) is

a 7 p(E,TZI) distribution. Since X is 7 _(e,I), it follows that the mar-

p
ginal distribution of X is 9 p(g,(]+r2)1), i.e., the marginal density is

h(r) = [zﬂ(]+T2)]'p/Ze-P/[2(1+12)]

s

where r = [§-u}2. Hence (see (4.8))

STy = 220 ()

h(r) 1+12 :

It is easy to see in this case (as indicated in the discussion after

Theorem 2) that the optimal estimator is
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(5.1) s“(x) = x - og(]x=u]%) (x-),
where

o (r) = 1/(]+12) for 0 <r<b
(5.2) pc(r) =

pc.o(r) for b<r

and b is defined by
(5.3) o(b) = (14277 = oy (b).

(Lemma 3(i) and Lemma 4 describe oc O(r).) Furthermore, using Lemma 5, a

calculation (again using integration by parts) yields for the Bayes risk

of §C the formula
C - _ p b _ b
I A (1+T2 )+ c(1-u 7))
) b ]p/z -b/[2(1+7%)]
- e s
(1+<2)r (p/2) [2<1+r2>

where wv(z) s the cumulative distribution function of the chi-square dis-
tribution with v degrees of freedom.

To obtain some idea as to the effectiveness of the estimators §C, we
will present some tables of their risks. It is convenient to consider,
instead of r(ﬂ,§c), the normalized relative savings risk of Efron and

Morris [11] given by

(5.5) RSR(m,8) =

This measures the proportion of the potential Bayesian improvement over
§0(§) = X which is attained by the estimator §. The other side of the coin
is the "robustness" of the estimator, which in this case is indicated by C,
the amount by which the estimator could be worse than §0. To put this on
the same scale as RSR, we will formally consider the "relative risk robust-

ness”
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sup[R(8,6)-R(6,8%)]
e ~ .~ ~ o~
RRR(W,§) = ~

(This measure is also realistic in the sense that one would be concerned
about the possible harm in using ¢ instead of §0 relative to the maximum
potential gain available.) Thus small RSR indicates near optimality from
a Bayesian viewpoint, while small RRR indicates near optimality from a
classical or minimax or Bayesian robustness viewpoint.

For the remainder of the section, we will state results for the situa-

tion where X is 7 p(g,ozI), since this is the practical situation.

Theorem 3. If X is 9 p(Q,UZI) and g is 9 p(g,er), then

(5.6) 800 = x = o (x| 2/6%) (x1),
. _ 2,2
where (Tetting r = [x-p|“/0")
* 02/(02+T2) for 0 <vr <b
(5~7) pc(r) =
I (r) for b<r
C/U 50
and b is defined by
(5.8) */™+E) = o, (b).
C/o,0
Furthermore,
C C(02+12}
(5.9) RRR(m,8") = 7 ,
po
and
2 -y/?
Cy _ C (Y/Z)p/ e

where y = bcz/(02+12) depends only on p and RRR(n,§C).



27

Proof.  Formulas (5.6) through (5.10) follow from the preceeding analysis

after dividing X, & and vC by o, and observing that

R(9)§o) - Y‘(’n’,§ = po,z and Y‘('n_’§’ﬂ') = pg T

o +1

The last statement of the theorem follows trivially from (5.8) and Lemma

3(i) when C =0 or p =1, while for C > 0 and p > 1 (5.8) can be written

2 2.q1/2
’ <1_[Ly<_+z] )
v\ 2 2

2 (c/o271/2 ; 2
It e e (1 ety ]
v\ 2 02 G2
or
1 172
|- PQRRR ]]/2 Kv+1<§[pyRRR] ) 1
y

(3 [y rer1Y2)

The pleasant feature of using RRR and RSR, as indicated in Theorem 3,

2

is that,for a given p, RSR(n,§C) depends on C, 02, and ¢~ only through

RRR(n,§C). The following corollaries and tables present interesting special

cases. The proofs are immediate from Theorem 3, Lemma 3(i), and Lemma 4.

Corollary 1. IfC>0and p=1, then

2
X - —%—-5-(x—u) if |x—u|2 f_C(02+T2)2/04
C( ) o+t
§ (X)) =
x - 2 (x-u) if  |x- |2 > Co%+12)% /6"
W H 33 Z s
RRR(w,ﬁC) = C(02+r2)/o4 (= RRR for short),

and

RSR(m,5°) = [1-y; (RRR)I[T+RRR] - [2RRR/x]'/2eRRR/Z
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Table 1.  RRR(m,s%) vs. RSR(n,6%) for p = 1, C > 0.

RRR{ O‘ .OOZJ .02’ .10 J.Z '.4 l.6 ’ .8 i].O ’].4 l4 l5 |oo

RSRl 1| .93 ‘ .80’ .58 ’.46 j.32 '.24{ .18 ,.16 |.1o 1.0115 l.oos {o

Corollary 2. If C>0and p =2, then

2
X - % > (X-u) if ]x—p|2 < bo?
ot T 7 ”
£ - y(Hx-u1C 72)
i~ 7] X=u o]
N VIR it lxel? > bl |

X -—
2 - 2 - L
IZ( Hl KO(%IZ(_E]/C/U >

RRR(1,8%) = C(o“+1°)/[20"1,
and
RSR(m,6%) = e¥/2[1- & + RRR(r,50)] .
(See Theorem 3 for the definitions of b and y. Note that an integral re-

presentation for Kl/KO is given in Lemma 4.)

Table 2.  RRR(m,6") vs. RSR(m,s®) for p = 2, C > 0.

RRRI O| .024‘ .073| .135| .20' .28‘ .36‘ .44[ .52

RSR’ 1’ .41 ! .31 l .24 I .19’ .]6‘ .13’ .11| .089

Corollary 3. If C>0and p = 3, then

2
X = = (x-p) it xul® < (Be)y

(>4

- 2
- [ Ixfgl v Lo 2:](¥'E) it |x-p|? > (P+cD)y,




RRR (,5°) =

RSR(r,6°) = [1-y5(y) I[T+RRR] -
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CloP+c2)/[36%],

(y/2)%/%e7Y/2

3/ /4
and
y ={§-RRR+ %—+RRR[]+8/(3RRR)]]/2} .
Table 3. RRR(n,5") vs. RSR(m,s") for p = 3, C > 0.
| -025 | -075 |.1 |.135 ,.2 l 4 ].7 ]1.0 1.5

RRR ’O

RSR !.296 ’.203 1.151 1.133 ’.

A}

116 I.O91l .052 l.027 l.014 !.008

Corollary 4. If C=0and p > 3, then
2 : 2 2.2
X = % (x1) it |x-u]” < 2(p-2)(c"+17)
o *t1
§C(§) = )
x - HP2e oy ir xel? 5 20p-2) (BD)
[X-u]
RRR(m,8") = 0,
and
Cy (p-2)p/2e_(p'2)
RSR(W’§ ) - [1'¢p(2(p'2))] - F(1+p/2)
Table 4. RSR(m,s°) for p > 3, C = 0.
p | 3 | 4 ‘ 5 | 6 | 7 | 8 | 9 l 10 | 15 ’ 20

RSR 1.296 !.135 !.0727 !.O427| .0267 |.0174 ].0117 l.OOS ’.0016l .0004
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Tables T through 4 exhibit the almost startlingly impressive perform-

ance of the estimators §C

, especially for p > 1. When p = 1, a substantial
sacrifice in Bayes risk improvement must be made if small RRR is desired.
For p = 2 and p = 3, however, the situation is more promising. When p = 3,
for example, one can guarantee that §C is no more than 10% worse than §°

at a cost of only 13.3% of the potential Bayes risk improvement. (Note,

in contrast, that the conjugate prior Bayes estimator §” has RRR(m,8") ==.)
Table 4 is particularly startling since C = 0, i.e., RRR(n,§C) =0 so §C is
minimax. When p > 5 one attains virtually all of the possible Bayesian
gains at no cost (in terms of possible worsened performance compared to §°).
Of course, as discussed in Berger [4], this exceptional behavior is due to
the Stein effect in simultaneous estimation. It is interesting that, even

when p = 2, there is apparently considerable benefit derived from this

effect.
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Rubin for several valuable discussions of these problems.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

31

References

Berger, J. (1980). Improving on inadmissible estimators in continu-
ous exponential families with applications to simultaneous estima-
tion of gamma scale parameters. Ann. Statist. 8, 545-571.

Berger, J. (1980). A robust generalized Bayes estimator and confi-
dence region of a mutlivariate normal mean. Ann. Statist. 8, 716-
761.

Berger, J. (1980). Statistical Decision Theory: Foundations, Con-
cepts, and Methods. Springer-Verlag, New York.

Berger, J. (1981). Bayesian robustness and the Stein effect. Tech-
nical Report #81-1, Purdue University.

Berger, J. (1982). Selecting a minimax estimator of a multivariate
normal mean. Ann. Statist. 10.

Berger, J. and Srinivasan, C. (1978). Generalized Bayes estimators
in multivariate problems. Ann. Statist. 6, 783-801.

Bickel, P. J. (1980). Minimax estimation of the mean of a normal
distribution when the parameter space is restricted. Technical Re-
port, University of California at Berkeley.

Bickel, P. J. (1980). Minimax estimation of the mean of a normal
distribution subject to doing well at a point. Technical Report,
University of California at Berkeley.

Brown, L. (1971). Admissible estimators, recurrent diffusions, and
insoluble boundary value problems. Ann. Math. Statist. 42, 855-
904.

Brown, L. (1981). The differential inequality of a statistical es-
timation problem. Technical Report, Cornell University.

Efron, B. and Morris, C. (1971). Limiting the risk of Bayes and
empirical Bayes estimators - Part I: the Bayes case. J. Amer.
Statist. Assoc. 66, 807-815.

Ghosh, M. and Parsian, A. (1980). Admissible and minimax multiparam-
eter estimation in exponential families. Technical Report, Iowa
State University.

Hodges, J. L., Jr. and Lehmann, E. L. (1952). The use of previous
experience in reaching statistical decisions. Ann. Math. Statist.
23, 392-407.

Hudson, M. (1978). A natural identity for exponential families with
applications in multiparameter estimation. Ann. Statist. 6, 473-
484,



[15]

[16]

[17]

[18]

[19]

[20]

32

Shapiro, S. H. (1972). A compromise between Bayes and minimax ap-
proaches to estimation. Technical Report No. 31, Department of
Statistics, Stanford University.

Shapiro, S. H. (1975). Estimation of location and scale parameters
- @ compromise. Communications in Statist. 4(12), 1093-1108.

Srinivasan, C. (1980). Admissible generalized Bayes estimators and
exterior boundary value probem. Sankhya.

Stein, C. (1955). Inadmissibility of the usual estimator for the
mean of a multivariate normal distribution. Proc. Third Berkeley
Symp. Math. Statist. Prob. 1, 197-206. University of California
Press, Berkeley.

Stein, C. (1973). Estimation of the mean of a multivariate distri-
bution. Proc. Prague Symp. Asymptotic Statist. 345-381.

Strawderman, W. E. and Cohen, A. (1971). Admissibility of estima-
tors of the mean vector of a multivariate normal distribution with
quadratic loss. Ann. Math. Statist. 42, 270-296.



