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CHAPTER 1

INTRODUCTION

1.1 Restricted Experimental Design

Consider the linear model y(x) = 8'f(x) + e, which is assumed to
hold for each "level" x belonging to a compact space x. Here
f(x) = [fo(x), f](x),...,fn(x)]' denotes a (column) vector of n + ]
known regression functions which are linearly independent and continuous
on X, 6 = (60, e],...,en)' denotes the unknown (column) vector parameter
of interest, ¢ denotes the unobservable "error" random variable with
expected value 0 and unknown variance 62 for all xex, and y(x) denotes
the observable "response” random variable at Tevel x.

Suppose that the ei's are to be estimated using N uncorrelated
‘ observations on the response random variable y(x) at levels

XpsnenaX of x. The linear model for these data is Y = X6 + e, where

N
Y = [y(x]),...,y(xN)]‘, where X = fo(x]) flxq) - o (xq)
folxy) Tylxy) Falxy)ds
and where e = (e],...,eN)'. Here the vector e has expected value

E(e) = 0 and covariance matrix Cov(e) = OZIN. It will be assumed

throughout that estimation of the ei's is to be based on the classical

1

estimator 8 = (X'X)”'X'Y. For this estimator, E(8) = 8 and
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Cov(8) = o“(X'X)"'. Of course, if rank(X) < n + 1, then the inverse
operation should be replaced by a generalized inverse.

Since the covariance matrix of 6 is a measure of the joint
imgrecision of the éi's, a reasonable goal is to "minimize" this
matrix. The sense in which it is minimized will define an optimality
criterion which should be appropriate to the particular problem.
Because 02 is unknown, the preceeding goal may be best realized by
choosing those Tevels xq,...,x, which minimize (x'X)"1 in the ap-
propriate sense. The design problem is to determine the optimal
choice of tﬁese levels.

This design problem may be better posed once it is reformulated.
To *that end, let the levels of x at which observations are taken be
ref%be]]ed so that XpseemsX,, denote distinct levels at which
Npseeonn, observations are made {(respectively). Here n, +.o.0.+ n. = N.

Now let an exact design gN be a probability measure on X which
concentrates mass ni/N at Xi» for i = 1,...,r. Thus the support of
an ;exact design prescribes the Tevels of x at which observations are
to be made and the corresponding masses prescribe the proportions of
the N observations which are to be allocated to each of these levels.

Next let the 1nfbrmation matrix (per observation) of an exact -

N) 24,1 N)

= X'X/N. Note that Cov(8) = ¢"M” (& )/N. Hence a

design be M(g

reformulation of the design problem is to choose an exact design

N

measure gN on % which minimizes Mu](g ) (in the appropriate sense).

Note also that



Mkz(s

H)

fo(x)f (x)dgN(x), for 0 < k, 2 < n.
x k 2 — —

N)

Hence M(g") = [f(x)f(x)’dgN(x) (where the prime denotes transpose).

The detenﬂ?nation of an optimal design is more tractable
mathematically if the class Qf designs is extended to include all
"approximate designs". Here an approximate design ¢ is any prob-
ability measure on %. Thus an approximate design prescribes éhere
in X observations are to be taken and how they are to be allocated.
It will be implicitly assumed that all design measures are defined
on the Borel subsets of X.

Now let the information matrix of any (approximate) desigf& be
M(g) = [f(x)f(x)'dg(x). Thus the approximate design problem ;é to
determié; a design ¢ which minimizes M'](g) in an appropriate sense.

The Timitation of the approximate design approach should be
noted. In practice, only an exact design can be implemented. It
may happen that an optimal approximate design is not exact for
certain values of N; it might even be exact for no value of N. This
problem will be less troublesome for large N, but for any va]ﬁe of N
an optimal approximate design should strongly suggest how to best
allocate observations throughout Z. With this limitation in E?nd,

b

designs will henceforth be assumed to be approximate.
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The standard approach to optimal design problems has been to
determine a best approximate design £€s where 5 is the set of all
probability measures on X. That is, % is the closed convex hull of
{égfx € X}, where 8, denotes a measure concentrating mass 1 at the
point x. Thus the standard assumption has been that any proportion
of the observations may be allocated to any point of Z. Under this
assumption, various optimality questions have been answered for
certain choices of f(x) and 2z by Elfving ('52), de la Garza ('54),
Guest ('58), Hoel ('58), Kiefer and Wolfowitz ('59), Kiefer and
Wolfowitz ('60), Hoel and Levine ('64), Karlin and Studden ('66b),
and many others.

*The present interest is to address some of the same questions
undzr a restriction on the class z of a]lowgb]e designs. This
restriction will be assumed to be such thaf z is still closed and

convex. Several types of design restrictions will now be introduced.

1.2 The E-Problem

Consider the case that E is a compact subset of x and

(1)

= {g]|g(E) = 1}. Equivalently, = = {£]g(x-E) = 0}. Such a restricted
class of designs would be appropriate to a situation where observations
cannot be obtained for xex - E but can be obtained at will for xe€E.
It should be noted that if X is replaced by X' = E and = is

replaced by 56 = {lexeéx'}, then the E-problem fits the unrestricted
design framework. The reason for considering the E-problem in a
restricted design setting is to better compare the answers obtained for
optimality questions on E to those answers ejther known for x or
obtained for other design restrictions. It will typically be the case

that x is connected but E is not.



As an example of the E-problem, consider the (univariate) setting

d

with X = [a,b] and X - £ = U G., where the G. = («.,8.) are disjoint
j=1 J N

open intervals. Krein and Nudelman ('77) refer to this example as the

”EJ—prob1em“. The EJ—prob1em, with J = 1, might arise if one control
instrument can only be used to set levels of x¢ [a,a]] and another can
only be used to set levels of x¢ [B],b]. Another example of the
E-problem is E = {X1""’Xk}' This example might arise if a digital

instrument is to be used to control the level of x.

1.3 The (9,y)-Problem

Consider the case that ¢ and y are measures on X with the;properties
that o(x) <1 < y(X) and dp < dyp. That is, 9(A) < y(A) for any Borel
set AC X. Equivalently, ¢ is absolutely continuous with respect to y
and‘%%(x).i 1 for all x€ Support(y). Now let = = {g|dp < dg < dy}.

Thus ¢ and v impose lower and upper "limits" on how observatifins may be

e

allocated within 7.

Remark 1.3.1: An equivalent version of this problem is to set

n=2¢-g9,setv=y -9, and consider 7 = {n|0 < dn < dv}. Then the
requirement that £(x) = 1 is replaced by the requirement that
n(x) =1 - ¢(x). In this sense the (¢,y)-problem is equivalent to
the (0,v)-problem.

For an example of the (¢,y)-problem, let X = {X1""’Xk}’ Tet
9, = @({xj}) and wj = w({xj}) for j = 1,...,k, let 0 < % f_wj,for
each j, and let P oot g < 1 < by et Yy This yields the

setting of regression on a discrete set with Tower and upper limits

imposed on the proportion of observations taken at each ﬁoint. The




discrete nature of x might be due to a digital control instrument,
the Tower limits @j might be due to observations already obtained,
and-the upper limits wj might represent limitations on the instrument's
caﬁ%bility to provide observations. For any point X5 with no Tower
(upper) limit, it would be appropriate to set 5 = O(wj = 1).

For another example of the (@,y)-problem, let X = [a,b], Tet
dp = 0, and let dy(x) = ydx for v > 1/(b-a). This example might arise
from a setting where x denotes time and observations are obtained

continuously in time. The parameter y restricts the rate at which

they may be obtained.

1.4, The p-Problem

*Consider the case that {Gwlme Q) is a collection of disjoint sets
which are open in x and P, € (0,1) for each w€ q. Let

== {z

g(Gw) < ps w€ @}. Thus only a limited proportion of the
observations may be obtained from each Gm. However, within each Gw
obsgrvations may be allocated at will provided that the restriction
g(Gm) <P, is satisfied. It may be noted that the Gw need to be open
in order for = to be closed.

As an example of the p-problem, consider the (univariate) setting
with X = [a,b], with @ = {1,...,s}, with Gj = (aj’8j>’ and with
0 < Py < 1 for j =1,...,s. This example, with s = 1 and G, = (a],b]

might arise in an industrial setting where x denotes time and the

design restriction is due to limited manpower on a night shift.



1.5 The Marginal Restriction Problem

Consider the case that X = Z] x X, and a measure £*¥ on Z] is

1
prescribed. Let = = {g]g(A x.ZZ) = gT(A) for all Borel sets AC Z3.

~No

Thus designs are restricted to have first marginal gT. Note that
since dg(x],xz) = dgf(x])dg(lex]), the restricted design problem

is to determine the optimal allocation of observations with respect to
x, for each xq € Support(g?).

Cook and Thibodeau ('80) relate an example of the marginal
restriction problem in which X1 €2y = {0, 1,...,10} denotes a pretest
score and Xp€%y = {O;l} denotes a variable which indicates wgether a
subject belongs to the treatment or control group. For this example,
the design problem is how best to assign subjects to one of the two
groups given their pretest scores.

It should be noted at this point that a design restriction might

also be a hybrid of any of these four basic types of restrictfbn.
e

1.6 Comparison of Design Restrictions

The following general framework encompasses all of the preceding
design restrictions. First consider = to be embedded in the linear
space of all signed measures on X. Suppose that for each vy€r, LY
is a continuous linear functional on this space and AY is a real
number. Then each of the preceeding design restrictions may be seen
to satisfy

z = {EFLY(E)iKYS YET} N Zy =v~ (1.6.1)

by appropriate choice of T, the LY, and the ky.



For the E-problem, the choices r = {1}, L](g) = [ dg, and Ay =0

2k

confirm that = = {g|g(x - E) = 0} satisfies (1.6.1).

"Recall that, according to remark 1.3.1, the (o,p)-problem is equiv-
3
alent to the (0,v)-problem, where v = ¢ - . That is, it suffices to

consider 7 = {n|dn < dv}. HNow set Ny = {n|n(xz) =1 - (x)}, set
r = Support(v), set each Lx(n) = %%(x), and set each Ay = 1. These

choices confirm that 97 = {niLx(n) <Ay XEZI N Ng-

%

For the p-problem, the choices T "

Q, Lw(g) = é de, and A, =P
w

confirm that = = {g[g(Gw) <P w€q} satisfies (1.6.1).
For the marginal restriction problem, the choices T = {1,2} x By

(where B is the class of all Borel subsets of x]),

1]

L]A?g) = —LZA(g) - [ dg, and Mg = “hop t —gT(A) confirm that

Axxé

== {e|e(A x Xé) ET(A) for all Borel sets A C x]} satisfies (1.6.1).

The linearity and continuity of the LY are immediate in each case.

These two properties also imply that = is convex and closed in general.
3Some rather loose relationships between the different design
restrictions may now be indicated.
Consider first the marginal restriction problem with
Support(g*) = {s],...,sk} = Z]<: R. This situation may be viewed as

1

a special case of the p-problem with @ = {1,...,k}, with pj = g?({sj}),

and with Gj = {Sj} X ZZ.
Consider next the E-problem where E < R. This situation may be
viewed as a limiting case of the p-problem with @ = {1}, with

Gy = X - E, and with Py = 0. It may also be loosely viewed as a



limiting case, as y + », of the (q,y)-problem with do = 0 and

dp(x) =14 0 XEX - E
*{dX x€E.

Consider finally the (¢,y)-problem where ¢ = 0 and
Support(y) = {Xy5.-25% 3 =Z < R. This situation may be viewed as
a special case of the p-problem with o = {1,...,k}, with Py = w({xj}),
and with Gj = {Xj}' In the case that the support of ¢ is not finite,
the (¢,y)-problem might be loosely viewed as a limiting case of the

p-problem as a partition of y's support becomes arbitrarily fine.

1.7 Program of Text : -

T

In chapter II, the problem of characterizing the admissible designs
for polynomial regression on an interval is first embedded in a more
general moment space problem which is of interest in its own right.

For the E-problem and (¢,y)-problem restrictions, theorems 2.2.6 and
2.3.5 characterize the admissible designs in terms of their "E}dex”
I(5). For the p-problem restriction, theorem 2.4.4 shows that an
analogous condition on I(¢) is necessary for admissibility. Theorems
2.4.8 and 2.4.12 show that this condition is also sufficient in two
special cases. For each of these three types of design restrictions,
the index I(g) "counts" the support points of a design in a way
appropriate to the particular restriction. In sections 2.2 and 2.4,
consideration is also given to the secondary problem of improving upon
an inadmissible design. -
In chapter III, the problem of determining a D-optimal restricted

experimental design is considered. Theorem 3.1.1 provides a

characterization of D-optimality which is a generalization of the
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equivalence result of Kiefer and Wolfowitz ('60). Subsequent sections
of the chapter provide applications of this theorem to the various
types of design restrictions already introduced.

Chapter IV considers the problem of c-optimality in the restricted
design settiné. A characterization of c-optimality is given by theorem
4.1.1 which generalizes a result of Kiefer and Wolfowitz ('59). The
remainder of the chapter is devoted to applications of this theorem to
the different types of design restrictions. In ﬁarticu]ar, section

4.2 includes the (implicit) solution to a problem of Hoel ('65).
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CHAPTER II
ADMISSIBILITY FOR POLYNOMIAL REGRESSION

2.1 Preliminaries

Recall that the most general statement of the optimal design prob-
lem is to determine a design measure g €= which "minimizes"” M'](g).
The sense in which this minimization is undertaken will define an
optimality criterion. It is often the case that a particular cri-
terion corresponds to a real-valued function ¢ defined on the set of
non-negative definite matrices. Thus a "¢-optimal" design ¢ would be
one which minimizes @(M'](g)). Examples that will be treated in sub-
sequent chapters are @(M-1(g)) = |M'](g)| ("D-optimality") and
@(M’l(g)) = c'M'](g)c (”c-optima]ity“), where ¢ €H2n+].

Now different functions & will establish different orderings on
the set of information matrices {M(g)|g €=}. Hence different criteria
would be expected to yield different optimal designs. However, in many
cases (including D and c-optimality) the function ¢ is “"monotone".
That s, if M1 (g) < M1 (£'), then o(M1(£)) < o(M 1 (£')). Here the
inequality A < B for non-negative definite matrices A and B should have
the customary meaning that B - A is non-negative definite. Hence
arises the "admissibility" problem: characterize those designs whose
inverse information matrices are minimal with respect to the partial
ordering "<". Now recall the elementary fact that positive‘definite

! 3_Bf1. Thus the

matrices A and B satisfy A < B if and only if A
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equivalent statement of the admissibility problem is to characterize

those designs whose information matrices are maximal with respect to

the partial ordering "<

Definition 2.1.1: A design £ is admissible if and only if there

does not exist another design £' such that M(g') > M(g).

Once the admissible designs have been characterized, all others
may be eliminated from consideration since they would be inferior for
any monotone o.

Consider now the setting of univariate polynomial regression of
degree n, with x = [a,b] and f(x) = (1, XyeoaaXT). 'Thenvthe informa-
tion matrix for a design £ has elements Mij(g) = f:fi(x)fj(x)dg(x)

b

b ...
_ i+ a , _ k. . s
= fax Jdg(x) = Mgy where each u, = fax dg(x) and 0 < i, j <n.

The fact that the information matrix for polynomial regression is such
a Hankel matrix has enabled the following theorem to be estab1ished.
The importance of this theorem is that it relates the admissibility
problem for polynomial regression to a readily posed moment space

problem.

Theorem 2.1.1: £ is admissible for polynomial regression of degree

n if and only if there exists no other design which shares the same

values of Hyseeeshon 1 but has a larger value of Hon-

Proof: A proof of this theorem may be found in Karlin and Studden

('66a).

The preceding theorem yields the conclusion that characterizing

the admissible designs for polynomial regression of degree n is
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equivalent to characterizing those designs giving rise to moment points
(”0’ Hysesesbop 15 uz“)' which 1ie on the upper boundary of the moment
space generated by all designs £ €=&. |
The problem of characterizing the admissible unrestricted design§
for polynomial regression has been treated by de la Garza ('54), Kiefer
('59), and Karlin and Studden ('66a). The characterization that they

have developed is given by the following theorem.

Theorem 2.1.2: & is admissible for polynomial regression of degree

n on [a,b] if and only if the support of £ includes n-1 or fewer
interior‘points.

This theorem will turn out to be a special case of theorem 2.2.6.

According to theorem 2.1.1, the restricted admissibility problem
for polynomial regression of degree n is to characterize those designs
£ €% whose value of Hop is at least as large as any other‘design‘which
shares the same values of ug, Hiseeesbop ¢ This problem is most
readily solved in a more general setting. In order to lay out the

setting, the following definition is necessary.

Definition 2.1.2: The continuous functions Ug> UgseeesUp are a

Tchebycheff system on [a,b] if and only if the determinant

UO(XO) UO(X]) - uO(xm)
u](xo) u](x1) - u](xm)

>0 (2.1.1)

um(xo) um(x]) - um(xm)

wh rac< < <...< X_ < b.
enever a < X, < Xy o <
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At times it may be convenient to denote the determinant in (2.1.1)

UO, U],...,Um
XO, X-I,...,Xm

by either or {u(xo), u(x]),...,u(xm)|, where the

(column) vector u(x) = [ug(x)5 up(x),...5u (x)]'. The following
lemma provides an important relationship between a Tchebycheff system

Ugs Ugpsee-slo and "polynomials" P(x) = v'u(x), where v €B2m+].

Lemma 2.1.1: Every non-trivial (v # 0) polynomial P(x) = v'u(x)
has m or fewer zeroes if and only if either Ugs Upse--slp OF

=Ugs Upses sl comprise a Tchebycheff system.

Proof: A proof of this lemma may be found in Karlin and Studden

('66a).

Note that the polynomials uo(x)«: Jb.ui(m)<= X,...,um(x) = x" form
a Tchebycheff system on any closed interval. In fact, the Vandermonde
determinant ]u(xo),...,u(xm)[ = i (x; - x;) > 0 whenever

O<i<j<m J
a < Xg <e..< X < b

For the remainder of this chapter it will be assumed that both

Ugs=--aUp and Ugse--olps Up g are Tchebycheff systems on [a',b], where

m’
b

-a' < a. The notation y = f uk(x)dc(x) for k = 0,...,m+1 will be em-
a ~ _

ployed. In this setting, an extension of the admissibility problem

is the following.

Problem 2.1: Characterize those measures o such that Mol attains
the largest (or smallest) possible value among all measures sharing the

same values of Hgse e ooty
The admissibility problem corresponds to the case that uk(x) = xk

for k = 0,...,m = 2n-1, Hg = 1, and the maximum value of Mt is desired.
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In the following sections of this chapter, problem 2.1 will be
treated for the cases that = arises from the E-problem, the (¢,y)-
- probiem, and the p-problem on [a,b]. The E-problem results obtained
will correct some results of Krein and Nudelman ('77). The (¢,¢)-
problem results obtained will generalize the results of Karlin and
Studden ('66a) and Krein and Nudelman ('77). The p-problem results

obtained will be entirely new.

2.2 The E-Problem

Recall that E denotes an arbitrary compact set contained in
% = [a,b]. It may be assumed without loss of generality that a, b €E.
For purposes of notation, let © denote the set of all finite positive

measures on E and M_,q = {ulp = fu(x)do(x); o €z}. In order to solve
: E

prdb)em 2.1, some preliminary results are needed. The following lemma
establishes the existence of a strictly positive polynomial which will

be needed for subsequent proofs.

Lemma 2.2.1: There exists a polynomial P(x) = w'u(x) > 0 for all

x €[a,b].

Proof: Let a' < Xy < X, <...< X_ < a and
—_— -7 2 m

P(x) = fu(x;),...ou(x ), u(x)|. Then the polynomial P(x) = r'u(x) > 0

1
for all x E(xm,b] > [a,b] by definition 2.1.2.

The guaranteed existence of such a positive polynomial enables the

following theorem to be proven.

Theorem 2.2.1: M1 is the closed convex cone generated by u(E).
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Proof: The proof is essentially that of Karlin and Studden ('66a).

It is included here for the sake of completeness.

The fact that 7 is a convex cone is obvious.

m+1
To show that mm+]”is closed, consider a-sequence {u

(k)} Cmm_ﬂ

such that u(k) ~ u and u(k) = fu(x)dok(x) for o €I. According to
E
lemma 2.2.1, there exists P(x) = w'u(x) > 0 for all x €la,b] o E.
Hence n'u(k) = fP(x)dok(x) Z-Gk(E) min P(x) which implies that
E E

ok(E) f_n'u(k)/min P(x). Because u(k) + u, this inequality yields the
E

existence of o €[0,») such that ok(E) < 9 for all k. Hence there must
exist a subsequence of {ok} which converges weakly to o €z. This
1mp1iesbthat u = fu(x)do(x) and hence that M1 is closed.

E e

By Carathéodory's theorem, the convex cone generated by u(E) is

m+2
W= {wlw= 2 p.u(x

); p; >0, x; €E}.
i=1 ! !

i

This convex cone is trivially containéd in W%ﬂq. The containment could

be strict only if there exists u = fu(x)do(x) éﬁ%ﬁq - W and a hyperplane
E

m+1 such that n'uy < 7'w

separating u from W. That is, there exists = €R
for all w €W. Now for each x €E, w = o(E)u(x) €W and hence
7'y < olE)r'u(x). Integrating both sides of this inequality with fespect
to o yields o(E)r'u < o{E)n'u. This contradiction implies that no such
u ew%ﬁq-w could exist and thus the theorem is proved. |

The relevant properties of W%ﬂq may be stated in terms of non-

negative polynomials P(x) = w'u(x), where = Eﬂfﬁ%.

The set which
generates such polynomials will be denoted by

P = {n]w'u(x) > 0 for all x €E}.
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Theorem 2.2.2: i. u emmﬂ if and only if ='u > 0 for all wEPmﬂ.

ji. ue€s mmﬂ if and only if there exists = EPmH - {0} such that

m'n = 0.

iii. pEInterior(WzmH) if and only if «n'u > 0 for all = &Pmﬂ - {0}.

Proof: i. For any closed convex cone C < Rmﬂ , let

¢t = {wlw'y > 0 for all y €C}. Note first that ¢t is a closed convex
cone. It will now be shown that C++ = C. For any y €C, w'y > 0 for
allwect., Thus cccC™. Suppose that there exists y, ectt - c. Then 'k
there must exist a hyperplane which separates Yo from C. That is, there
exists w EIRmH such that w'y0 < w'y for all y €C. Now it must be true
that w €Ct. Otherwise, there exist y €C and y > 0 such that w'y < 0

and w'(yy) < W'yg < w'(yy). Then w ect implies that 0 f_w'yo <w'(0) = 0.

This contradiction forces ¢t ¢ = ¢ so that ¢t = c.

Now consider any = EW?LmH. Then choosing » = u(x) yields
C + . :
0 < wn'u = n'u(x) for any x €E. Thus mmﬂc Poe1e Consider next any

m€R 1. Then Ty = én'u(x)do(x) > 0 for any u = éu(x)do(x) €M1

+ + . . .

Thus Pmﬂ c mmﬂ’ Therefore, mmﬂ = Pmﬂ which implies that
. = R T .

mmﬂ W‘mﬂ = Pm+1 = {u|m'n > 0 for all erPmH}.

ii. - Assume first that there gxists = EPmH - {0} such that
m'p = 0 < w'n for all ﬁemmﬂ. Thus there is a supporting hyperplane
to Wzmﬂ at p which means that u €3 mmﬂ .

Assume next that u €3 7 Then there must exist a supporting

mtl’
hyperplane to mmﬂ at u. That is, there must exist = # 0 such that
m'w < wu for all pem ,,. Now it must be true that m €& ;. Other-

wise there exist p* EZ’zmH and y > 0 such that ='u* < 0 and



7' (yu*) < m'u < n'(yp*). Then = EPmH implies that 0 < «'u < n'(0).
iii. The last part of the theorem is equivalent to part ii. Thus the

proof of the theorem is now complete.

The following Temma covers the trivial case that Zﬁm+] has no

interior points.

Lemma 2.2.2: 7Wm+1 has a non-empty interior if and only if E

conitains at least m+1 points.

Proof: has no interior points if and only if it is contained

m+1

in some hyperplane which passes through the origin. That is,

Interior(m _,,)= ¢ if and only if there exists v # 0 such that

mt1

0= v'y = [v'u(x)do(x) for every u fu x)do(x) €% e This relation-
v E ,

ship holds for every positive measure ¢ on E if and only if E is con-

tained in the set of zeroces of P(x) = v'u(x). According to lemma

2.1.1, this implies that E includes m or fewer points. Conversely,

suppose that E = {x],...,xk} with k < m. Now Tet

Ug> Upse .-l ' ' -1
P(x) = = v'u(x) and note that v # 0. Then E <P '({0})

Xy X-l,...,Xk

so that the pkoof is complete.

Theorem 2.2.2 serves to relate the properties of mnﬁl to those of

ﬁn+1'

properties of Pkt

The following notions are needed to develop the relevant

Definition 2.2.1: For any real-valued function g on E which is A

not identically zero, S+(g) will denote the number of sign changes

of g(x) on E. The convention applied to zeroes will be that they are

18



declared positive or negative so as to maximize this number of sign
changes. In the case that g(x) = 0 on E, then S+(g) is defined to be
the number of elements of E.

Note that S+(g) may be infinite.

Definition 2.2.2: The index of a set ACE is IO(A) = S+(1—XA),

where XA denotes the characteristic function of A. Equivalently,

+
Io(A) =S (XAC)-

Definition 2.2.3: The index of a measure o €% is

I(c) = IO(Support (c)).

The following will serve as an example of the index calculation.

Example 2.2.1: Let E =[0,2]u{3,4,5,6} and let A = Support(o)

= {0,1,2,3,5,6}. Then for purposes of evaluating S+(1-XA), the sign
of 1—XA(x) may be declared positive for x €{2,6} and negative for

x €10,1,3,5}. Hence I4(A) = I(o) = S"(1-x,) = 7. Note that the points
x = 2 and 3 in this example illustrate the possibility that the assign-

ment of signs to the zeroes of I—XA need not be unique.

Now the essence of the index concept is that it provides an appro-
priate way to count the support points of a measure q. The following

notions will make explicit the means of counting.

Definition 2.2.4: A block of A < E is a maximal subset of A with

the property that no two of its elements are separated by an element of

E - A

19
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The role that the blocks of a set play in the calculation of its

index is made apparent by the following lemma.

Lemma 2.2.3: If A consists of blocks B],...,Bp then

IO(A) = IO(B])'+...+ IO(Bp).

Proof: According to definition 2.2.4, adjacent blocks of A are
separated by one or more points of E - A. At these points the sign
of ]"XA is positive. Hence the number of sign changes of ]'XA is the

sum of the number of sign changes through each b]ock.b That is,

IO(A) = IO(B]) +...+ IO(Bp).

According to this lemma, the index of a set is calculated block-wise.
The following definition and lemma establish the means of calculating

the index of an individual block.

Definition 2.2.5: Let B be a block of ACE.

i. If a or b €B, then B adjoins a or b (respectively).

ii. Otherwise, B is interior.
Lemma 2.2.4: If B is a block containing k elements, then

I.(B) =

k B adjoins a or b
O(

[(k+1)/2] B is interior,

where [-] denotes the greatest integer function.

Proof: Assume first that B adjoins b and its elements are denoted
by X] SeeeS Xy < X = b. Then ]—XB(X) = 0 for x €{xy,...0X }
According to definition 2.2.1, the sign of ]'XB(Xi) should be declared
to be (—1)i for the purpose of calculating S+(1—XB). Thus
I5(B) = S'(1-xg) = k. |
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Similarly, IO(B) = k if B adjoins a.

Assume now that B is an interior block and its elements are denoted
by a < Xy Seea< Xy < b. As before, the sign of ]'XB(Xi) may be declared
to be (—l)i for the purpose of calculating S+(1—XB). (Note that if k
i+l

is even, then (-1) is equally valid.) Thus

+ k+1 k odd
IO(B) - (]-XB) ={k k even
and the lemma is proved.

An illustration of these concepts of counting is provided by
example 2.2.1. The set A specified by that example is comprised of a
block B] = {0} which adjoins 0, an odd interior block 82 = {1}, an even
interior block By = {2,3}, and a block B, = {5,6} which adjoins 6.
Hence lemma 2.2.4 yields 10(81) =1, IO(BZ) =1+1=2, 10(83) =2,
and 10(84) = 2 so that lemma 2.2.3 confirms IO(A) = 7.

The following properties will be needed for the proof of subsequent

results.

Corollary 2.2.1: 1i. Let K denote the number of elements of AcCE

and 5 denote the number of interior blocks which are odd. Then
IO(A) = K + p.
ii. IO(A) < » if and only if A is finite.

iii. If A, A

1 5> then IO(Al) 5-IO(A2)'

Proof: i. The proof of the first part is an immediate consequenceii
of lemmas 2.2.3 and 2.2.4.
ii.  According to part i., K g_IO(A) < K+ K= 2K. Thus IO(A) < o if

and only if K < o,



iii. A, © A, implies that 0 < 1-x, (x) < 1-x, (x) <1 for all x €E.
172 A0 = AT =

Then according to definition 2.2.1, it must be true that

+ + .
S (1—XA ) > S (l—xA]). That is, IO(AZ) 3-IO(A1)‘

2
The following corollary will be needed to prove theorem 2.1.2.

Corollary 2.2.2: If E = [a,b], then IO(A) is the number of

endpoints contained in A plus twice the number of interior points

contained in A.

Proof: In this setting every interior point is an odd block of
size one and index two. Thus the proof is an immediate consequence

of lemmas 2.2.3 and 2.2.4.

The following theorem establishes the correspondence between the
index of a set and the zeroes of a non-netative polynomial. It will

be important to the proof of subsequent results.

Theorem 2.2.3: Let A < E. There exists = Eﬁh+1 - {0} -such that

P(x) = w'u(x) vanishes precisely on A if and only if I5(A) <m.

Proof: First note that A must be finite. If the indicated poly-
nomial exists, A must contain m or fewer points according to lemma -
2.1.1. Conversely, if IO(A) < m then A must contain m or fewer points
according to corollary 2.2.1(i). Thus A = {Xqs- 000X} where k < m and
X] €eee< Xy

Assume first that IO(A) < m. Let the points ty <...< b be ob-
tained from A by preceding the left endpoint x, of any odd interior

block by X; - € where 0 < ¢ < min(xi - Xi—])° According to corollary
.i

22
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2.2.1(1), r = IO(A) <m. If r <m, then select m - r additional points
from [a', a). Llet Sq <-..< Sy denote these points and the ti's. Also
let 2 denote the number of elements in the block of A adjoining b and
C = (-1)*. (It may be that & = 0.)

Now consider the polynomial
P_(x) = Clu(sy)se..ouls,)s u(x)| = viu(x). Note that
P ([0,%)) = E N([s0 b1 U [, 9> Spqd U D50 Spogd U ---) and

-1 _ ‘
P ((-=,01) = E N ([s s.1 U s 355, ,]U...) due to the alter-

m-1°
nating property of the determinant and definition 2.1.2. Thus P€ is
nearly the desired polynomial; its only shortcoming might be an unwanted
"dip" to the left of the left endpoint of an odd interior block. To

alleviate this possible drawback, consider the 1imit polynomial

P(x) = Tim Véu(x)//v'v = Tim w;u(x) = q'u(x).
e+0 €€ e+0

The fact that the W 1ie on the unit sphere guarantees that a 1imiti
point exists. m may be taken to be any suqh limit point. The poly-
nomial P vanishes precisely on A by the construction of the sequence
SysenesSps lemma 2.1.1, and the limiting process. The non-negativity
of P is due to the value of C, the construction of the sequence
SqseeesSp and the limiting process.

Assume now that P(x) = w'u(x), that = €€ - {0}, and that .
P-]({O}) = A = {X]""’Xk}' As already noted, k < m. Hence corollary
2.2.1(i) implies that IO(A) < m unless A contains at least one odd
interior block. Thus it may be supposed that IO(A) > m and A has at
least one odd interior block. For each such block there exists an
element of E - A which separates it from any other block to its left,

For the right-hand-most odd interior block there exists an element of
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E - A which separates it from any other block to its right. Let T
denote the set comprised of all such “separating elements" and the
elements of A. By corollary 2.2.1(i), the number of elements of T

is IO(A) + 1 >m+ 1. Let t, <...< t denote the m + 2 smallest

0 mt+1
m
elements of T. Because P(x) = ) “iUi(x) it must be true that
i=0
Unsesart 5 P 1 s
0=|0 m = % p(t) (-1)™ 1A, where
t t ., t. i=0 !
0’ *"m’ Tmtl
u s - . L3 ,u
Ai 10 m > 0
tgserotiys Tiagoeeer T

by definition 2.1.2. Now for all "separating elements" ti €E - A,
P(ti) > 0 holds. Also, the construction of T implies that i is even

or odd for all of these separating elements (depending on whether there
is or is not an odd block adjoining A). Hence all non-zero terms in
the preceding summation have the same sign which contradicts the zero
value of the summation. Thus IO(A) > m cannot hold and the proof of

the theorem is complete.

Definition 2.2.6: o €1 represents u~62nm+] if and only if

p = fu(x)do(x).
E

The following important theorem provides two characterizations of

the boundary of mm+1'

Theorem 2.2.4: 1. w = fu(x)do(x) €3 m_,, if and only if
E

I{o) < m.
ii. If uw€s W%HW’ then its representation is unique. The converse

holds if E contains at least m + 2 points.
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Proof: 1. Assume first that u = [u(x)do(x) €3 7_.,. Theorem
E

2.2.2(i1) implies that there exists = EFh+l - {0} such that

0. Hence it must be true that

| v

0 ="y = [r'u(x)do(x) = [P(x)do(x)
E E

Support(o) C:P“]({O}), Thus application of corollary 2.2.1(iii1) and
theorem 2.2.3 yields I{o) = IO(Support(o)) E_IO(P']({O})) < m.

Assume next that p = fu(x)do(x) and I(s) < m. Theorem 2.2.3
: E

implies that there exists a polynomial P(x) = w'u(x) such that

T EF%+]

and theorem 2.2.2 implies that u €3 qu+1'

- {0} and P_]({O}) = Support(c). Hence m'u = [n'u(x)do(x) = 0
E

ii.  Assume now that p = fu(x)do(x) €3 My Part i. implies that

I{c) < m. Hence theorem 2.2.3 implies that there exists a non-negative
polynomial P such that Support(c) = P']({O}) = {X1""’Xk}° Note that
corollary 2.2.1(i) yields k < I(o) <m. Now set o, = c({xi})'for

k
i =1,...,k and consider the linear system n = Ju(x)do(x) = ) u(x
E 1=

Note that definition 2.1.2 implies that the vectors u(x]),...,u(xk) are

linearly independent. This guarantees a unique solution for Opses=s0p-

Thus the support and mass distribution of o are uniquely determined.
Assume next that b contains at least m + 2 points and

u EInterior(W%Hq). Recall now the earlier assumption that there is

a function u such that Ugs--->U u comprise a Tchebycheff system.

m+1 m> mtl

According to lemma 2.2.2, has a non-empty interior. Hence there

n m+2

: u H
must exist p_,q < H_,.q such that [ ]and [ ] belong to 7_,,- If
m+1 m+1 :

o and o denote measures representing these two points of Z@n+2, then

both ¢ and @ represent u E7Rm+1’ Thus the proof is complete.
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The following lemma clarifies part ii. of theorem 2.2.4 by covering

the trivial case that every moment point has a unique representation.

Lemma 2.2.5: If E = {xo,...,xk} and k < m, then every moment point

has a unique representation.

Proof: Let p = éu(x)dc(x) S/

K
must solve the Tinear system u = ] u(x;j)os. As in
i=0

the proof of theorem 2.2.4(ii), definition 2.1.2 implies that

Then Ogse -0

Ogs-«-»0) are uniquely determined.

A comparison of lemmas 2.2.2 and 2.2.5 now sheds further light
on part ii. of theorem 2.2.4. Specifically, they imply that if E
consists of exactly m + 1 points, then the interior of W%HQ is non-
empty but every moment point is uniquely rebresented. Henceforth it
will be assumed that E contains at least m + 2 points.

Note that at this point problem 2.1 has been solved for two cases.
The first case is the trivial case covered by lemma 2.2.5: if E'
consists of less than m + 2 points, then every moment point p 67Wm+1
is uniquely represented. The second case is covered by theorem 2.2.4:
if I(o) < m, then p €3 mm+] and is uniquely represented. In eithéer
of these cases, ¢ is unique so that Mt ] is already determined by the
values o> Mpse«ssbp- The next task will be to solve problem 2.1

m

for the case that p €Interior(7, To that end the following

m+1)'

notions will be needed.

Definition 2.2.7: A measure ¢ is principal if and only if

I(¢) =m+ 1.

and o, = O({xi}) for i = 0,...,k.
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Definition 2.2.8: A principal measure o is upper (lower) if and

only if the "sign" of 1 is negative (positive) at x = b.

" XSupport (o)
Here "sign" is taken to mean the sign of the function for purposes of
evaluating S+(e). Since E is assumed to contain at least m + 2 points
and I(¢) = m + 1, definition 2.2.1 implies that Support(c) # E. Hence
there must exist Xg €E such that ]"XSupport(o)(XO) = 1 so that the
“sign" of this function at x = b is uniquely determined.

The preceding is not the most readily applied version of the
definition. It is presented for comparison with definition 2.3.8 of

the next section. The following lemma provides an alternate version

of the definition and will be subsequently employed.

Lemma 2.2.6: A principal measure is upper (lower) if and only if

it has an odd (even) block adjoining b.

Proof: First let Xg = sup(E - Support(c)) which exists according
to the remarks accompanying definition 2.2.8. Next let Xy <eee< X
denote the elements of the block adjoining b (if it exists). Then for

(o) (x¢) s (1)

purposes of evaluating S (-), the sign of 1= Xsupport

for i = 1,...,k. This sign is negative at X = b if and only if k 1is

odd. Thus, according to definition 2.2.8, the lemma is proved.
The following corollary will be used to prove theorem 2.1.2.

Corollary 2.2.3: If E = [a,b], then a principal measure is upper

if and only if it concentrates mass at b.

Proof: The proof follows immediately from lemma 2.2.6.



It should be noted that the result of lemma 2.2.6 differs from
Krein and Nudelman's ('77) definition of an upper principal represen-
tation. They call a principal representation upper if it merely has
positive mass at b. This discrepancy turns out to invalidate some of
their later results.

The following theorem completes the solution of problem 2.1.

Theorem 2.2.5: Let EInterior(W%ﬁq). Among those measures

¢ representing u, the maximum (minimum) value of ol is attained if

and only if o is upper (lower) principal.

Proof: Let o be any measure representing u and P(x) = w'u(x)
be a strictly positive polynomial which exists according to lemma

2.2.1. Then 'y = [P(x)do(x) > o(E) min P(x). Hence
£ E
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‘“m+]i = I£Um+](x)dc(x)l < o(E) mgx |um+1(x)| E_ﬁ;%i%Yiy-m%x [um+1(x)|.

E
Then let Bog] © ﬁm+1 be the smallest and largest values of Mokl

attained by measures which represent p 65Wm+1. Also, let g and &

u u
be measures which represent [ } and [ _ ] (respectively). Now
B+l Mt

these two points lie on the lower and upper boundaries ofimm+2
(respectively), so theorem 2.2.4 implies that I(g) <m + 1, that
1(c) <m+ 1, and that both measures are unique with respect to

7 Since u EInterior(W%ﬁq), the same theorem implies that

m+2’
I(c) > mand I(5) > m. Hence I(g) = I(5) =m + 1 so that ¢ and ¢ are

principal representations of u.
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It will now be shown that o must be lower principal. First note

that since I(g ) =m+ 1, theorem 2.2.3 assures the existence of a poly-

m+1
nomial P(x) = } iU (x) which is non-negative on E and which satisfies
i=Q !

P']({O}) = Support(c). Recall that the construction of P(x) yields

m+]
//zw

where C = (-])Z and & > 0 is the size of the block adjoining b. Suppose

= 1im C
e+0

™

m+
1 S .

now that ¢ were odd. This would imply that = < 0. Also, m .1 0

m+1
or else theorem 2.2.3 would imply that m > I(g) = m+ 1. Then consider

1}
[ew]

m
.Xoﬂiui T Tt Emel T [P(x)dg(x)

m
< [POAB(X) = L mikg TP
1_"'.

Because m . < 0, the preceding inequality implies that Boe] >0

m+1°
Thjs contradiction must mean that & is even and hence that ¢ is lower
principal.

The proof that 5 is upper principal is exactly the same except
that ¢ is assumed to be even, w ., > 0, and hence ﬁm+] < Uiy This
contradiction implies that & must have an odd block adjoining b. . Thus
5 is upper principal and the proof is complete.

Note that in the course of proving this theorem, the existence and
uniqueness of upper and lower principal representations have been

established. Also, this theorem completes the solution of problem 2.1.

The following will serve as a counter-example to the results of

Krein and Nudelman ('77).
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2 3)l

Example 2.2.2: Letm = 3, let u(x) = (1, x, x7, x7)", and let

E=1[-2,-17ull, 2] U {-3, 3}. Consider the measure
2 T . - -
o = 1(6—3 e, 5, + 63) which yields w = (1, 0, 13/2, 0)' and
g = 97/2. Now I(¢) = 4 and so o must be either the upper or lower

principal representation of u €?n4. According to Krein and Nudelman
('77), o must be upper principal since it concentrates positive mass
at the point 3. Actually, o must be Tower principal since it has an

even block adjoining 3. Consider now the measure

5= (6., +6,) + 6. +5,) which yields u = (1, 0, 13/2, 0)" and
= 56. Since I(g) = 4, ¢ is a principal representation for u. In
fact, & must be the upper principal representation since it has an odd
block adjoining 3-and since ﬁ4 > Yg- This example points out the
ambiguity of Krein and Nudelman's ('77) definition of an upper principal
representation. In fact, their definitibn would imply that both ¢ and
g are upper principal.

At this point, problem 2.1 is solved and the results necessary to -

characterize the admissible designs for polynomial regression of

degree n on E have been obtained.

Theorem 2.2.6: 1. IfE consists of 2n or fewer points, then all

designs are admissible for polynomial regression of degree n on E.
ii. Otherwise, a design ¢ is admissible if and only if either

a. I(g) <2norb. I(g) = 2n and £ is upper.

Proof: The proof of this theorem is an application of moment

1

space results now established to the case that ui(x) = x° for

i=0,1,...,m= 2n-1 and ny = 1.
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i. If E contains m + 1 = 2n or fewer points, then lemma 2.2.5 implies
that every moment point (“0’ “1""’“2n—1)| has a unique representation.
Hence theorem 2.1.1 implies that every design is admissible.

ii. If E contains at least m + 2 = 2n + 1 points, then the class of
designs such that I(g) < m + 1 = 2n coincides with the class of designs

which uniquely represent u = Ju(x)de(x) Eazqzn. Hence theorem 2.1.1
E )

jmplies that each such design is admissible.

Finally, theorems 2.1.1 and 2.2.5 imply that the remaining admis-
sible designs are those which are upper principal representations of
thefr moment points u 67n2n. That is, I(g) =m+ 1 = 2n and g is

upper. Thus the theorem is proved.

At this point it may be noted that theorem 2.1.2 follows immediately
from theorem 2.2.6 and corollary 2.2.2.

Note also that the design & given in example 2.2.2 is admissible
for polynomial regression of degree n > 2 on E.

" As an added consequence of the properties ofim2n and m2n+1’ each
of the admissible designs given by theorem 2.2.6 is unique.

Note finally that admissibility for the E-problem depends only on
the support of a design. That will not turn out to be the case for
the (4,9) and p-problems. .

Now that problem 2.1 has been solved, a secondary problem may be
considered. Given a particular inadmissible design &, determine the
design £ which best improves & in the sense of admissibility. With
u(x) = (1, x,...,xzn'})', a more precise statement of this problem

is the following.
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Problem 2.2: Let u = fu(x)de(x), let oy = fxzndg(x), and let
£ E

h

v n be the largest value of the Znt moment attained by all measures

H

2
in £ which represent u. If Hop < ﬁZn’ determine the design & €% which
répresents u and attains ﬁZn'

Note that theorem 2.2.6 implies that either a. I(g) > 2n or
b. I(g) = 2n and ¢ is the lower principal representation for

11€Inter1or(m2n).

In the case that E = [0, 1], the following solution to problem 2.2
may be found in Karlin and Studden ('66a). The design ﬁo which solves
problem 2.2 has Support(ﬁo) = {0, 1, t],...,tn_]}, where ty,...,t 4
are the roots of the polynomial

HpTHp o HpTH3 Tt My, !
MpTH3 M3y T TV t
P(t) = ° - . @ :
- - . e . - tn']
M Hn+ Pnd1 M2 Hon-2"H2n-1

The distribution of mass among the support points is readily determined

1
by solving the Tinear system u = | u(t)dﬁo(t)-
0

In the case that E = [a,b], a design £ under consideration may’
first be transformed to a design n on [0,1] according to
t = (x-a)/(b-a). Once the transformed solution iy has been obtained,
it may be transformed back to the solution 20 on £ = [a,b]. Then
Support(EO) = {a, b, X]""’Xn-1}’ where X; = at (b-a)ti for
i=1,...,n-1.

Now if E # [a,b], it may nonetheless be true that Support(éo) < E.

In this case, EO €z and thus provides the solution to problem 2.2.
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Otherwise x, ¢ Efori=1,...,s and x; €E for i = s+l,...,n-1, where
1 <s <n-1. That is, exactly s of Eo's interior support points do

not fall in E. Now for each i = 1,...,s, let as = max(E N [a,xi))

s
and g; = min(E 0 (x;,b]). It is conjectured that .U]{ai’Bi} < Support(E).
i= :

If true, the problem reduces to determining the remainder of Support(F).
For s = n - 1, no further analysis is needed. For s = n - 2, a method
for determining the rest of Support(Z) will be indicated. For s < n - 2;”
no method is suggested. This approach will be illustrated by examples
withn =1, 2, 3, and 4.

It might be noted that problem 2.2 could have been posed in more
generality corresponding to problem 2.1. However, such an extension
is beyond the scope of the present study.

In the case of linear regression, Support(éo) = {a,b} < E. Thus
EO €% and the case n = 1 is solved in general.

In the case of quadratic regression, Support(éd) = {a, b, x]}. If
xT_EE, then EO €z and problem 2.2 is solved. Otherwise, the following

lemma provides the general solution.

Lemma 2.2.7: Ifn=2, Support(éo) = {a, b, X1}, and x],¢E, then
Support(Z) = {a, b, oy, 8y1.

Proof: First note that if Support(g) included more than four
points, then corollary 2.2.1(i) would imply that I(Z) > 4 and contra-
dict theorem 2.2.6. If Support(Z) contained fewer than four points,
then the support points must be a, b, and X1 because EO is unique for
the unrestricted problem. But Xq ¢E by assumption, so that Support(E)

cannot contain fewer than four points. Now since £ must have a odd



block adjoining a and one adjoining b, it must be true that

Support(Z) = {a, b, ¥;, y,}. Without loss of generality, y; < y,.
Now it will be shown to be impossible that Yo € Xy OV ¥y > Xq.

Consider the first of these possibilities, ie. a < Y1 <Y < Xy < b.

To solve for the mass distribution of £, consider the linear system
pgula) + pyulyq) + pyuly,) + pgu(b) = u
= ggpula) + ggqulxq) + ggulb),
where all masses are positive. Now

] lu(a), u, uly,), u(b)]
P17 Tu(a), ulyy), uly, ), ub)]

_ lU(a), U(X])a u(Yz): U(b)|
*01 Tula), uly;)s uly,J, u(b)]

<0

since a < Y1 €Yo < Xg < b. This contradiction disallows Yo < Xq-

Similarly, y, > x; is not possible. Thus a <y, < X, <y, < b must
1 1 1 2

1
hold.

Furthermore, there is no case in which (y], yz) N E can be non-
empty and £ still be upper principal. Thus it mUst be true that

Yy T e Yo = By and the proof is complete.

An example for n = 2 has been provided by example 2.2.2.
In the case of cubic regression, Support(éo) = {a, b, Xy5 X5}
If {x;, x,} CE, then ED €z and problem 2.2 is solved. The following

example will illustrate a method for determining ¢ if X] Or X, $E.

Example 2.2.3: Let n =3, let E=[-2, -1]J U [1, 4], and let

1 1 1
S VAR B A B AP

The transformed version of the example

+
wCL—-l

3"



35

o 1 1 1 1 1
has E = [0, gl U 3 10, n = 7391,6 * 728172 + 28273 * 30576 2N¢

N~ (1, 2/3, .4769, .3519, .2648, .2024)'. Also,

;]—;2 ;2-;3 1 .1898 .1250 1
P(t) = Lz—ﬁ3 ﬂ3—ﬂ4 t s .1250 .0871 t
£2 0871 .0624  t?

]J3"U4 U4—U5

The roots of this po]ynomﬁa] are approximately t] = .31 and t2 = .75.
The transformed support points are -2, 4, ST -.14, and Xy % 2.5. |
Note that x; §E so that Eg ¢z,

Now the form of EO suggests that Support(g) = {-2, 4, -1, +1, y},
where 1 <y < 4. If this is true, then £ will be upper principal and
the only remaining requirement 1is that the linear system

pyu(=2) + pou(-1) + pqu(1) + ppu(4) + pguly) = u (2.2.1)
must be satisfied. Hence it must be true that
0= |u, u(-2), u(-1), u(1), u(4), uly)| = P(y). That is, y must be
a root of the polynomial P. With
u o= éu(x)dg(x) = (1, 2, 31/6, 13, 211/6, 97)', the roots of this

polynomial are -2, -1, 1, 4, and the desired value y = 48/19 =~ 2.5263.
Then the solution to (2.2.1) is approximately p, = .0040, o, = .0682,
py = .1984, p, = .0238, and pg = .7056. Thus g €2 is the admissible
improvement of &; in fact, ng & 275.17 < 281.44 = ﬁ6‘

Now consider the same setting except that
E=[-2, -1Ju 1, 21 u [/8, 4]. With this modification, y ¢E which
suggests that now Support(Z) = {-2, 4, -1, 1, 2, /8}. If this is true,

then £ will be upper principal and the remaining requirement is that

the linear system



p]U(-Z) + pzu(']) + p3U(]) + Q4U(4) + DSU(/—S_) + p6u(2) = p must be
satisfied. The solution is approximately Py = .0012, Py = .0786,
= 1177

.0108 .4065, and Pg = .3852. Thus £ €% is

P3 > Pg = » Pg =
the admissible improvement of &; in fact, ng & 275.17 < 277.29 R:QS.

It is conjectured that the methods illustrated in example 2.2.3
will be sufficient to solve problem 2.2 in any setting involving
cubic regression.

In the case of quartic regression, Support(éo) = {a, b, Xy5 X5 X3}
If {xy5 X,, X3} € E, then EO €z and problem 2.2 is solved. If none of
the points STRITIRS belong to E, it is conjectured that

Support( ) = {a, b, 0y Bys Gy Bos g, 83} and the mass distribution

is obtained by solving the linear system u = [u(x)d&(x). If exactly
E )

one of the points Xps Xps X belongs to E, it is proposed that the

3
method illustrated in example 2.2.3 be employed. The difficult case
is that in which exactly two of the points X1s Xos X3 belong to E.

The following example will illustrate such a situation.

Example 2.2.4: Letn =4, let £ =[-4, -1Ju [1, 4], and let

g=qglé_g+6_,+68,+65). Then |
(1, 0, 13/2, 0, 97/2, 0, 793/2, 0)' and it may be determined that

1

X; = -Xx3 ~ 2.61 and x, = 0. Here x, §E so that g, ¢=.

2
Now the symmetry of & and the form of EO suggest that

Support(€) = {-4, 4, -1, +1, -y, y}, where 1 < y < 4, and that £ have

a symmetrical mass distribution. If this is true, £ will be upper

principal and the only remaining requirement is that the even moments

of £ match those of £. To implement this requirement, let

= £({y, -y}) and t = £({4, -4}). Then p, 1, and y must solve the system



(1-p-7) + py® + 16t = u, = 13/2,

(1-p-7) + y* + 256t =y, = 97/2,

(1-p-1) + oy® + 40967 = ug = 793/2.

The solution is approximately y = 2.6540, p .8498, and T = .0243 so
that E({1, -1}) ~ .1259. Thus £ €% is the admissible improvement of
g; in fact, ug = 3408.5 < 3684.5 R:ﬁg.

What made £ so easy to obtain here was the symmetry of £ and E.
To illustrate the difficulties otherwise, consider the same setting
except that E = [-4, -2] u [1, 4]. With this modification, it is
proposed that Support(g) = {-4, 4, -2, 1, y1, ¥} where -4 <y, < f2
and 1 < Yo < 4. The open question is how to determine ¥y and Yo in
such a situation.

The preceding examples should serve to illustrate some methods

that may be used to solve problem 2.2 for general n and some dif-

ficulties that arise for n > 4.

2.3 The (¢,p)-Problem

Recall that ¢ and y are finite measures on X = [a,b] such that
de < dy. Recall also that, according to remark 1.3.1, it suffices

to consider the (0,v)-problem on X = [a,b]. It may be assumed with-

out loss of generality that a, b ESUpport(v). For purposes of notation

1l

let E = Support(v), let £ = {o|do < dv}, and let

/I {ulu = Ju(x)do(x); o €2}. In order to solve problem 2.1, some
£ _

preliminary results are needed. The following lemma is analogous to

theorem 2.2.1. The moment space an+] of this section may be viewed

as a truncation of the convex cone an+1 of section 2.2.
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Lemma 2.3.1: mm+1 is convex, bounded, and closed.
Proof: The convexity of mn&] is obvious.

To show that W%HJ is bounded, note that the Euclidean norm

[ul] < o(E) max [ju(x)]] < v(E) max [ {u(x)]| for all w&m_ -
a<x<b a<x<b

To show that Wﬂn+l is c]osed consider a sequence {u(k)} CIZRm+]

such that u(k) -+ u and u = fu Ydo (x) for oy €yx. Now each

ok(E) < v(E). Hence there must exist a subsequence of {ok} which
converges weakly to o €z. This implies that u = fu Ydo(x) and

hence that mm+1 is closed, completing the proof.

The following lemma dispatches the trivial case that
Interior(mm+1) = ¢ so that theorem 2.3.1(iii) may be proved. Note

that this lemma corresponds exactly to Temma 2.2.2.

Lemma 2.3.2: 7.4 has a non-empty interior if and only if E

contains at least m+l points.

Proof: First note that 0 €z implies that O EW%HJ' At this

point, the proof is that of lemma 2.2.2 verbatim.

The relevant important properties of W%ﬂq may be stated in terms

m+1

of polynomials P(x) = v'u(x), where v €R For purposes of

notation, let

P_(x) =

-P(x) P(x) <0
| { 0 P(x) >0
and P+(x) = P(x) + P_(x) denote the negative and positive parts of
P(x).
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The following theorem relates such polynomials to the properties

of W%ﬁq. Its role is analogous to that of theorem 2.2.2.

Theorem 2.3.1: 1. u €7ﬁm+1 if and only if

viu > =P (x)dv(x) (2.3.1)
E

for all polynomials P(x) = v'u(x).

ii. nweEsd 7, if and only if u 67ﬂm+] and there exists v # 0 such

m+1
—fP (x)dw(x

i

that v'yu

i, If w€d Moyqys then u has a unique representation. If E contains

at least m+2 points, the converse also holds.

Proof: i. Assume first that p = [fu(x)do(x) €M - Then
£

vip = [P(x)do(x) = fP+(x)dc(x) - [P (x)do(x) > O - JP_(x)dv(x)
E E E E

for all polynomials P(x) = v'u(x).
Assume next that u ¢2nm+]' Then there must exist a separating
hyperplane such that v'u < v'w for all v4€7nm+], where v # 0. Now

let P(x) = v'u(x), let o be some measure such that

do . 1 P(x) <0
gg(x) ={
0 P(x) > 0,
and let w = fu(x)do(x). Then
E
Vi < V'w = fP(x)do(x)

1"

fP (x) 3 (X)dv(X) - IP (x) ——(X)dv( )

-fP_(x)dv(x)
E

so that (2.3.1) is not satisfied.
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iq. Assume now that u €3 7 Because 7 is convex, there

m+1 " m+1

must exist a supporting hyperplane to W%WFI at u such that v'u < v'w
for all w€m_,,, where v # 0. If P(x), o, and w are defined as in
part i., then v'u < v'w = - P_(x)d (x). Thus equality must hold in
(2.3.1). -

Assume now that n EInterior(mm+1). Then for any v # 0, there

must exist w€m ., such that v'u > v'w > -{P_(x)dv(x), where
E

P(x) = v'u(x). That is , equality does not hold in (2.3.1) for any
v # 0.
iii. Assume now that u€3 Zﬁn+]. According to part ii., there exists

a non-trivial polynomial P(x) = v'u(x) such that v'u = -fP_(x)dv(x)
E

for any measure o which represents u. Hence (2.3.1) implies that o
must satisfy

1 P(x) <0
%o P(x) > 0.
Thus ¢ is uniquely determined except possib]y for its distribution
of mass among the zeroes of P(x). If Xy e X denote these zeroes,
then lemma 2.1.1 implies that k <m. Now let o, = 0({Xi}) for

i=1,....k, let A=E NP 1((-=,0)), and note that

k
uo= Ju(x)dv(x) + 7} “(Xi)gi' Definition 2.1.2 implies that
A =1

u(x]),...,u(xk) are independent and hence that the masses oy,...,0,
must be unique.
The proof of the converse of part iii. follows the proof of the

converse of theorem 2.2.4(i1) verbatim except that lemma 2.3.2

| replaces lemma 2.2.2. The proof of the theorem is now complete.
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The following lemma clarifies part iii. of theorem 2.3.1 by
covering the trivial case that every moment point has a unique
representation. Its statement and proof are essentially the same

as lemma 2.2.5.

Lemma 2.3.3: If E = {xo,...,xk} and k < m, then every moment

point has a unique representation.

Proof: The proof follows the proof of Temma 2.2.5 verbatim except
that theorem 2.3.1(ii1) replaces theorem 2.2.4(ii).

A comparison of lemmas 2.3.2 and 2.3.3 sheds further light on
part iii. of theorem 2.3.1. Specifically, they imply that if E
consists of exactly m+l points, then the interior of W%HQ is non-
empty but every moment point is uniquely represented. Henceforth
it will be assumed that E contains at least m+2 points.

Thus far, theorem 2.3.1(ii) and (iii) provide characterizations
of the boundary of mm+1' However, implementation of either may be
less than straightforward. Specifically, part ii.'s criterion requires
the construction of a certain polynomial. Implementation of part iii.
would require that uniqueness be proved. The following notions will
be used to provide a more applicable characterization of those
measures representing moment points on the boundary of Z@n+1' The
characterization obtained will lead to a solution of problem 2.1 in

the present setting.

Definition 2.3.1: Let q(x;0) =

XSupport(v-o)(X) - XSupport(o)(x)

for o €2. Then the index of o is I(o) = S+(q), where the operation

S+(-) is performed as required by definition 2.2.1. That is, the
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sign changes of q are calculated relative to E = Support(v).
Note the correspondence between this definition and definitions
2.2.2 and 2.2.3. The following will serve as an example of the index

calculation.

Example 2.3.1: Let [a,b] = [0,10] and

0 x €(3,4) u (5,6) U (7,8) U (9,10)
dv(x) ={dx x€(0,1) u (1,2) U (2,3) U (4,5) U (6,7) U (8,9)

1/5 x€{0, 1, 2, 3,...,10}.
That is, v has eleven point masses superimposed on an absolutely
continuous measure which equals either zero or Lebesque measure. Also,
E = Support(v) = [0,3] u [4,5] u [6,7] U [8,9] U {10}. Now consider
the measure defined on E by

0 x €[0,1) U (4,5) U (6,7]

dx x €(1,2) u (2,3) U (8,9)

H

do(x)
1/5 x €{8,9}

1/10 x€{1, 2, 3, 4, 5, 6, 10}.
[0,17 u {2,3y u [4,5] U [6,7] U {10} and
Support(cs) = [1,3] u {4,5,6} U [8,9] u {10}. Hence

It

Then Support(v-o)

-1 x€(1,2) U (2,3) u [8,9]
q(x;o) = ¢ 0 x€{1, 2, 3, 4, 5, 6, 10}
+1 x €[0,1) u (4,5) u (6,7)
for x €E. Thus I(s) = S'(q) = 10.
The essence of the index concept is that it provides an appropriate
way‘to count the number of times that a measure alternates between O
and v. This "counting" is based on the sign of q(x;o) for

x €E = Support(v). The following notions will make explicit the means



of counting. They will be illustrated following corollary 2.3.1.
These concepts will also be very much analogous to those introduced in
section 2.2.

First assume that A = q—]({O}) N E is finite and S+(q) < =,

Definition 2.3.2: Let B be a block of A (as in definition 2.2.4)

and Xy o< Xy denote its elements.
i If xp = max([a,x]) N E) exists, then the pre-sign of the block B

is

5(5-) = {sgn[q(xo)] Xg < X1
sgn[q(x1—)] Xg = Xq-
(Here sgn[y] = y/ly| for y # 0 and sgn[0] = 0.)

ii.  If i1 = min((xk,b] N E) exists, then the post-sign of B is

sonlalxeey) Xear > %

S(B+) ={
sgnlq(x +)] Xee] = Xg-

Definition 2.3.3: An interior block B is nodal (non-nodal) if

and only if 8$(B-) and S(B+) are equal (unequal).

The relationship between these concepts and those of section 2.2
may be noted. An interior block for the E-problem corresponds to a
non-nodal block with &(B-) = 8(B+) = 1.

To consider the sign changes of q(x) on E, note that the following
definition describes the only way q(x) can change sign without attain-

ing an intervening zero.

Definition 2.3.4: ‘If there exist o and B such that

[0,8] NE = {a,8}, q{a) # 0, q(g) # O, and sgnlq(a)] # sgnla(g)], then

then G = («,8) is a gap of A.
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Note that a gap might be regarded as a nodal interior block of
size O.

According to Temma 2.3.3, S+(q) will be obtained by adding the
indices of A's blocks and gaps. The following definition prescribes

how to calculate these individual indices.

Definition 2.3.5: The index of a block B of A which contains k

elements is IO(B) = k+1 if B is an odd non-nodal interior block or an
even nodal interior block. Otherwise, IO(B) = k.
If all interior blocks in section 2.2 are considered to be non-

nodal, then definition 2.3.5 corresponds nicely to lemma 2.2.4.

Lemma 2.3.4: Let B ,Bp and G1,...,G comprise all the blocks

1277 s
and gaps of A = q'1({0}) N E. Also, assume that S+(q) < o, Then

S (q) = 10(81) +...+ IO(Bp) + s,

Proof: The proof follows readily from definition 2.2.3 and
definitions 2.3.2 through 2.3.6.

This lemma plays the role in section 2.3 that lemma 2.2.3 played
in the preceeding section. The following corollary is analogous to

corollary 2.2.1(1).

Corollary 2.3.1: Let K denote the number of elements of

A= q-]({O}) N E, let p denote the number of its interior blocks which
are odd non-nodal or even nodal, and s denote the number of its gaps.

Then S+(q) =K+ p+s.

Proof: The proof is an immediate consequence of definition 2.3.5

and lemma 2.3.4.
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A second look at example 2.3.1 may serve to help illuminate
the developments from definition 2.3.2 to corollary 2.3.1. First
note that for the example, A = q* ({0}) NE = {1, 2, 3, 4, 5, 6, 10}.
Its blocks relative to E and B] = {11, 82 = {2}, 83 = {3,4},
B4 = {5,6}, and B5 = {10}. Here B1 is an odd nodal, 82 an odd non-
nodal, By an even nodal, and 84 an even non-nodal interior block.
=2+1=3,1

Thus IO(B1) =1, I,(B

0 2)

and I.(B.) = 1 according to definition 2.3.5. Now the one gap of A

0 5)
relative to E is Gy = (a],B]) = (7,8). Thus lemma 2.3.4 confirms
+
that I(c) = S (q) = 10(81) +, ..+ Io(,BS) + 1 =10.
The following theorem establishes the conditions under which

a polynomial exists which has the same alternating behavior as g(x).

This theorem will be important to the proof of subsequent results.

Theorem 2.3.2: There exists a non-trivial polynomial

P(x) = v'u(x) such that the properties
i.  P(x) > O whenever g(x) > 0 and
ii. P(x) < 0 whenever q(x) <0

hold for all x €E if and only if S+(q) < m.

Proof: Assume first that the polynomial exists. Note that
properties i. and ii. imply that P(x) = 0 whenever q(x) = 0 for
X €E. Hence S+(q) §_S+(P). Now the number of sign changes of P(x) on -
[a,b] is no more than m as a consequence of lemma 2.1.1. Thus the
same must be true for the number of sign changes on E < [a,b] so that
s'(q) < sT(P) <m.

Assume now that S+(q) <m. Then the set A = q_]({O}) N E must be

finite so that its elements may be denoted by Xp <eee< Xy Also,
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corollary 2.3.1 implies that K 5_S+(q) < m. At this point, the con-
struction of the polynomial P(x) is similar in spirit to the con-
struction of the polynomial in theorem 2.2.3.

First let the sequence t; <...< tr be obtained from A by preceding
the left endpoint X; of any interior block which is odd non-nodal or
even nodal by x.-e (where 0 < ¢ < mgn(xi—xi_])) and by including
(ai + 81)/2 for every gap G; = (“1’ Bi) of A. Corollary 2.3.1 implies
that r = S+(q) <m. Ifr<m, then selectm - r additional points
from [a',a). Let Sq <.ee< Sy denote these points and the ti's. Now
there exists Xo €E such that q(xo) # 0 and q(x)/q(xo) > 0 for all
X E(xo,b] N E. (If such an Xg did not exist, then it would be the
case that q(x) = 0 on E. But then S+(q) >m + 2 according to the
assumption that E contains at least m + 2 points and corollary 2.3.1.
This contradiction ensures that such an Xg exists.) Then let & denote
the size of the block adjoining b and C = (—1)gsgn[q(x0)]. (It may
be that & = 0.)

Now consider the polynomial
Pe(x) = Clu(sl),...,u(sm), u(x)| = v;u(x). Note that
P ([0.2)) = E N ([0 U [5pp_p25p1] U [y g55p31 U ) and

P ((-=,01) = E n ([s

. m_],sm] U [sm_3,sm_2] U ...) due to the alternat-

ing property of the determinant and definition 2.1.2. Thus PE is
nearly the desired polynomial; its only shortcoming might be an
unwanted change of sign to the left of the Teft endpoint of an odd
non-nodal or even nodal interior block. To alleviate this possible
drawback, consider the limit polynomial

P(x) = lim v'u(x)/W'v_ = lim w'u(x) = v'u(x). The fact that the
ev0 € € E ed0 F
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W 1ie on the unit sphere guarantees that such a limit point exists.

v may be taken to be any such 1imit point. Because of the construction
of the sequence SqseeaSys Temma 2.1.1, and the limiting process,

P 1({0}) NE=A=q '({0}) NE. The fact that P(x) > O whenever

q(x) > 0 and x €E is due to the value of C, the construction of
Sqs-+eS0o and the 1imiting process. Likewise P(x) < 0 whenever

q(x) < 0 and x €E. The proof of the theorem is now complete.

Clearly this theorem plays the same role in section 2.3 as did
theorem 2.2.3 in the preceding section. Note also that the develop-
ments from definition 2.3.2 to theorem 2.3.2 did not exploit any
special properties of q(x;o) or E = Support(v). In fact, they apply
equally well to any function q(x) defined on any compact set
E < [a,b].

At this point, a more applicable characterization of those measures

representing moment points on the boundary of W%HJ may be proved.

Theorem 2.3.3: n €3 7nm+1 if and only if its representation o

has index I(o) < m.

Proof: Assume first that u = [u(x)do(x) €3 M4q- Then according
~ £ N

to theorem 2.3.71(ii), there exists a non-trivial polynomial

P(x) = v'u(x) such that

1 P(x) <0
) {
0 P(x) > 0.

Now I(o) = S+(q), where the function

q(x;o) = XSupport(v~o)(X) - XSupport(o)(X)' Thus P(x) < 0 implies
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that q(x;0) = -1 and P(x) > 0 implies that g(x;o) = +1 for x €E.
Application of theorem 2.3.2 immediately implies that S+(q) < m.

Assume next that u = fu(x)do(x) and that m > I(o) = S+(q). Then
E

theorem 2.3.2 implies that there exists a non-trivial polynomial
P(x) = v'u(x) such that P(x) > O whenever q(x) > 0 and P(x) < 0 when-
ever q(x) < 0 for x €E. Hence q(x) < 0 implies that P(x) < 0 and

g(x) > 0 implies that P(x) > 0 for x €E. Thus

i o
P(x) >0

so that v'u = [P( -JP_ (x). Then theorem 2.3.1(ii)
E E

implies that p €3 mm+1 and the theorem is proved.

Note that at this point, problem 2.1 has been solved for two
cases. The first case is the trivial case covered by lemma 2.2.3:
if E = Support(v) consists of less than m+2 points, then every moment
point u E?nm+] is uniquely represented. The second case is covered
by theorems 2.3.3 and 2.3.1(iii): if I(o) < m, then u €3 mm+] and
is uniquely represented. In either of these cases, o is unique so
that Mt ] is already determined by the values Hgs Myse--olpe The

next task will be to solve problem 2.1 for the case that

p €Interior(m To that end the following notions will be needed.

+]

Definition 2.3.6: A measure o €z is principal if and only if

I(c) =m+ 1.

Definition 2.3.7: A principal measure o is upper (lower) if and

only if the "sign" of q(x;o) is negative (positive) at x = b. Here

"sign" is taken to mean the sign of the function for purposes of
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evaluating S+(-). Since E is assumed to contain at least m + 2 points
and I(c) = m + 1, definition 2.2.3 implies that q(x;o) is not identi-
cally zero on E. Hence the "sign" of this function at x = b is
uniquely determined.

Note the correspondence between definitions 2.3.6 and 2.2.7 as
well as that between definitions 2.3.7 and 2.2.8. The following
theorem completes the solution of problem 2.1 in the present setting.
Note especially that the solution it provides reads exactly the same
as that of theorem 2.2.5. Of course the terms in the two statements

carry different but analogous meanings.

Theorem 2.3.4: let u EInterior(Z@n+]). Among those measures
o representing p, the maximum (minimum) value of M) is attained if

and only if o is upper (lower) principal.

Proof: Recall that W%HZ is bounded according to lemma 2.3.1.
At this point, the proof is nearly the same as that of theorem 2.2.5.
Let TR I T be the smallest and largest values of it ] attained

by measures which represent u QW%HJ' Also, let ¢ and o be measures

U u
which represent{: } and{: } (respectively). Exactly as proved
H .
m+1

Yol

in theorem 2.2.5, both ¢ and o are unique and principal.

It will now be shown that o must be lower principal. First note

i

that since I(o) = m + 1, theorem 2.3.2 assures the existence of a

m+1
) viui(x) such that P(x) > 0 whenever gq(x;o) > 0
i=0

polynomial P(x)

and P(x) < O whenever q(x;g) < 0 for x €E. Recall that the con-

struction of P(x) yields
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= 1im C
e+0

Vm+1

m+1
/ I (v,
i=0

where C = (—1)ngn[q(x0)]. That is, C is the “"sign" of q(x;o) for

u0’ ’um
Sga-- Sy

purposes of calculating S+(q). Suppose now that this "sign" were
negative. This would imply that Vit < 0. Also, Vit # 0 or else

theorems 2.3.1(i1) and 2.3.3 would imply that m > I(s) =m+ 1. Then

consider
m m -
].Zovi“i T Ve ‘ép-(x)dg(x) = 1.20"1“1 ML
Because v_.; < 0, this inequality implies that .- 3_ﬁm+1. This

contradiction must mean that C is positive and hence that ¢ is lower
principal.
The proof that o must be upper principal is exactly the same

except that C is assumed to be positive, v > 0, and hence

mt+]

Mol < B e This contradiction implies that C must be negative.

Thus o is upper principal and the proof is complete.

Note that in the course of proving this theorem, the existence
and uniqueness of upper and lower principal representations have
been established. Also, this theorem completes the so]utién of
problem 2.1.

At this point, the results necessary to characterize the admissible

designs for polynomial regression of degree n have been obtained.

Theorem 2.3.5: Let v = y-¢ and E = Support(v).
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i. If E consists of 2n or fewer points, then all designs are admis-
sible.
ii. Otherwise, a design ¢ is admissible if and only if either

a. I(g-9) < 2norb. I(g~9) = 2n and g-¢ is upper.

Proof: The proof of this theorem is an application of moment
space results now established to the case that ui(x) = xi for
i=0,1,....m=2n-1and yg = 1 - o([a,b]).

The remainder of the proof is the same as that of theorem 2.2.6
except the results of section 2.2 that are cited should be replaced
by their counterparts in section 2.3.

Note that as an added consequence of the properties of ZQZn and
m2n+], each of the admissible designs given by theorem 2.3.5 is
unique.

The following will serve as an example of the application of

theorem 2.3.5.

Example 2.3.2: Llet n = 2, let [a,b] = [-3,3], Tet d¢ = 0, and

let
%dx -3 <X < =2
%- X = -2
dy(x) = —%(x+1)dx -2 < x < -1
0 -1 <x<0
1 x =0
dy(-x) 0 <x<-3

That is, ¢ is a symmetrical measure which has 3 point masses super-

imposed on an absolutely continuous measure. Now consider the design




] P,
§“ X = =2
-1
de(x) = §(x+1)dx -2 < x < -1
0 Xe["33"2)U["]3D]
dg(-x) 0 < x < 3.

Now I(g) = S+(q) = 4 according to definition 2.3.1. Also, q(3:¢) = 1

implies that £ is a Tower principal representation of
u= (1, 0, 65/18, 0)' with Hy = 203/15. Hence theorem 2.3.5 implies

that ¢ is inadmissible for quadratic regression. Consider instead the

design
%dx -3 < X < -W
- 0 -W < x <0
dg(x) = ) -
]—§(3-W) x =10 .
dg(-x) 0<x< 3,

where w = (43/4)'/3. This design yields v = (1, 0, 65/18, 0)' and
ﬁ4 = %1(243—w5) > ug.  Thus M(g) > M(t) so that £ is better than &
in the sense of admissibility. In fact, € is an upper principal

representation of u so theorem 2.3.5 implies that £ is admissible.

In the present setting, problem 2.2 will not be treated. Results

would be much harder to obtain under the (¢,p) restriction than under v

the E restriction. The reason for the increased difficulty is that
the E-problem is more nicely related to the unrestricted version of

problem 2.2 than is the (g,y)-problem.
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2.4 The p-Problem

Recall that {Gw[w €q} is a collection of disjoint open sets, that
pme(O,l) for each w €Q, and that = = {g|g(Gw) < Ps w €Q}. For
x = [a,b], it may be assumed without loss of generality that each
Gw is an interval which is open in [a,b]. It will be seen that the

further assumption that @ = {1,...,s} imposes no loss of generality.

S
It will be helpful to Tet GO = [a,b] - U Gi' For technical reasons,
i=1
S _
neither a nor b is allowed to belong to U aGi. To obtain the results
i=1

of this section, it will also be assumed that u(x) = (1, x,...,xm)'.
b

For purposes of notation, let M., = {ulp = [ u(x)de(x); £ €2}, Tlet
a

£ = {yglg €z, y > 0}, and let W, = {ulp =f u(x)do(x); o€ z}. As in
a

sections 2.2 and 2.3, M is convex and closed. Note also that 7
m+1 m+1

is the closed convex cone generated by Mm+1‘ Furthermore, 7% may

m+1

be viewed as a truncation of the (unrestricted) convex cone generated
by u([a,bl).

A convention that will be adopted in this section is that aMm+]
denotes the boundary of Mm+1 relative to {1} x R™. That is,
aMm+] = Mm+1 N3 W%HJ' A further convention will be that
m+1) = Moer Mo
The first aim of this section is to provide necessary conditions

Interior(M

for the solution of problem 2.1 when s > 1. It will then be shown
that these conditions are also sufficient for the solution of problem
2.1 in two special cases. The first case is that s = 1 and

G] = (a],b] for ay > 2 (or Gy = [a,sl) for By < b). The second case
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is that s = 2, that Gy = [a,B]) for 8y < b, and that G, = (az,b]
for 3] <y

The results for s > 1 will first be derived for the case that
g(Gi) = p; for i = 1,...,s (and pp *---F Pg < 1). The results for
general designs £ €= will then follow readily by an induction
argument. Now let the "dual cone" of W%HJ be denoted by

— + _ i
Pl = Ty T {r|r'u > 0 for all wem .}

Lemma 2.4.1: Let g(Gi) = p,; for i=1,...,5 and let

b

p = [ u(x)dg(x) €3 Moy

a
i. There exists = EF%+] - {0} such that ='p = 0.

ii. Let A; = inf n'u(xi) for i = 0,...,5. Then

G;

S
support(g) < U

1_0{Xi EGi’”‘u(xi) = A5t (2.4.1)

Proof; 1. First note that p€3 Mm+] implies that u €3 mm+]'
The conclusion of this part then follows immediately from theorem
2.2.2(i1).
ji. To establish the second conclusion, it will first be shown

that

.

1

s ;
]pi Ayt 1 - 1_Z]p].))\o > 0. (2.4.2)

If this were not true, then there would exist Xi(EGi for i = 0,...,5%

s S
such that J p,r'u(x.) + (1 - J p.)n'u(xy) < 0. Then set
i=1 ! ! i=1 ! 0
- S S
=l p;s, + (1 - L p;)s, and note that

i=1 i i=1 0
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5
)+ (1 - 1§]pi)“|u(xO) < 0. But

TER SO that this contradiction implies that (2.4.2) does hold.

Thus,
,b S S
0=mn'y = | miu(x)dg(x) > Z E(G-)Ai + [1 - z E(Gi)lko
a i=1 i=1
s S
= Ly (- dpgdig 20
i=1 i=]

Furthermore, equality can hold only if (2.4.1) is valid. Thus the

lemma is proved.
The following will be analogous to definition 2.2.3.

Definition 2.4.1: Let £(6,) = p, for all 1eWca = (I,...,s} and

£(G.) < Py otherwise. Then the index of the measure g €% 15

i
I(g) = EO(Support(g) - U9 Gi)' Here IO(°) is as defined by corollary
icW

2.2.2.
It might be emphasized at this point that if Gi = (ai’b} then

BGi = {a,}, if G, = [3535} then aGi = {Bi}’ and if

-

i

G}f = (ai”gi) < {a,b) then aGi = {ai’Bi}' The following example will

illustrate the index calculation.

Example 2.4.1: tet [a,b] = [-2,1], Tet s =1, let G, = (0,11,

let p, = 1/5, and note that aG} = {0}, Consider first the measure
£ = ?/65_] + 2/3(3O + 1/684. Then g(G}) = 1/6 < py SO that
I{g) = IO(Support(g)) = 5, Consider next the measure

g = 5/2108 , + 128/210s + 35/2108, + 1/56]. Then

-1/4 0
E(G]) = 1/5 = py so that I(g) = IO(Support(E) - {0}) = 4. This

55



56

i1lustrates the essence of definition 2.4.1: if ¢ assigns full mass
to a Gi’ then Gi's boundary is excluded from the index calculation.
It is also seen that I(¢) > I(£) even though

IO(Support(g)) < IO(Support(é)).

The following theorem provides a necessary condition for u€s3 Mm+]
in the special case at hand. In that sense, it is analogous to theorems

2.2.4(1) and 2.3.3.

Theorem 2.4.1: Let E(Gi) = P; for i =1,...,s. If

b
o= fau(x)dg(x) € 3 Mm+-l, then I(E) <'m.

Proof: A case by case analysis for m even and m odd will show
that I(¢) > m would contradict lemma 2.4.1.
Suppose first that m = 2k and I(¢) > m. Note that this can happen
s

only if Support(g) - U 3G, includes more than k interior points or it
i=1

contains exactly k interior points and at Teast one endpoint. Now let
P(x) = n'u(x) be the polynomial given by lemma 2.4.1. Observe that

(2.4.1) can hold only if P'(x) = 0 at every support point belonging

. S .
to (a,b) - U aGi and P'(x) = 0 has at least one root between every
i=1

s
pair of support points which do not beiong to u aGi. Thus if
i=1
s
Support(g) - U 3G includes k + 1 interior points, then P'(x) must

i=1

have at least (k+1) + k = m + 1 roots. This is impossible for a
non-trivial polynomial of degree m - 1. (If P(x) = m'u(x) were

constant, then n'y = 0 for = # 0 cannot hold.) Similarly, if
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Note that definition 2.4.2 is analogous to definitions 2.2.7 and
2.3.6. The only differences are the meanings of index in the dif-
ferent sections. Note also that definition 2.4.3 is exactly the
same as that given by corollary 2.2.3. .

It might be noted that the assumption that neither a nor b

S
belongs to y

BGi is needed for the following theorem to be proven.
i=1

Theorem 2.4.2: Let g(Gi) = p; for i = 1,...,s and let
u€ Interior(Mm+]). If £¢c= attains the maximum (minimum) value
of Hopp among all measures from = which represent p, then either

I(¢) <m or £ is upper (lower) principal.

Proof: Note first that |u max |um+](x)|. Then let

<
+1‘-—
m a<x<b

Eerl S Ml be the smallest and largest values of Ml attained by

measures from = which represent ueM ... Also, let ¢ and £ be

M1
two points 1ie on the lower and upper boundaries of Mm+2 (respectively),

H u , '
measures which represent [ ‘ ] and [ ] (respectively). Now these
H

Sm+]

so theorem 2.4.1 implies that I(g) <m+ 1 and I(£) <m + 1. Thus the
only way for the conclusion of the theorem to be violated is for g to
be upper principal or £ to be lower principal.

It will now be shown that g cannot be upper principal. According

to lemma 2.4.1(i), there exists (no,...,n s T )'EFh+2 - {0} such

m’ Tmti
m
that izoniui + nm+]gmf] = 0. Herem ., #0orelseue?d M 4q- Suppose
that b€ Support(g). In the case that m = 2k, I(g) =m+ 1 implies that
s

Support(g) - U aGi consists of the point b and k points from
i=1 '



U

L

4

H

o0y

N

Y

1
-
Lﬂ

Eo

e

b goon

aft




60

To estab]ish necessary conditions for the solution of problem 2.1
in the general case, the following notation will prove useful. For
any set Wca = {1,...,s}, let

g(W) = {g]e(6;) < p; for all i€H}.
That is, =(W) is the set of allowable design measures for a
“sub-problem" with (possibly) fewer design restrictions. The set W
prescribes which of the restrictions are in effect for the sub-problem.
Note that z(Q) = = and that =(¢) = Che the set of all probability
measures on X = [a,b]. Note also that w]<: W2<: Q implies that

E(W]) -} E(Wz).

{13

The following lemma relates such sub-problems to £ in the context

of problem 2.1.

Lemma 2.4.2: Let Wc @, let €€ 3, and let £<Gi) < py for all
jeq - W. If ¢ solves problem 2.1 among all designs from Z, then

£ solves problem 2.1 among all designs from =(W).

Proof: Recall that £ solves problem 2.1 if and only if it
attains the largest (or smallest) value of et amongvall design
measures sharing the same values of Hgs - - by Without loss of
generality, it may be assumed that Mk T is to be maximized.

Then suppose that there exists &£ € (W) such that

b b
[ u(x)dg(x) = u = [ u(x)dg(x) but with
a a

b _ _ b )
fgum+](x)dg(x) =Wy 7 Ml S faum+](x)dg(x). Now since g(Gi) < p;

for all i€q - W, there exists pe (0,1] such that



(W]
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hypothesis, the conclusion is now established in this "reduced" case.

Thus the induction is complete and the theorem proved.

The following theorem is the application of theorem 2.4.3 to the

admissibility problem.

Theorem. 2.4.4: If a design £ ¢= is admissible for polynomial

regression of degree n, then either a. I(g) < 2nor b. I(g) = 2n

and b € Support(g).

Proof: This theorem follows immediately from theorems 2.1.1 and
2.4.3.

The conditions of this theorem are only necessary for a design
to be admissible. Thus the set of all designs which satisfy these
conditions form a "complete class". In that sense, a helpful
simplification of the admissibility problem has been achieved.

It will now be shown that the conditions of theorem 2.4.3 are
sufficient for the solution of problem 2.1 in two special cases. The
first is that s = 1 and G = (a],b] for a; > a. (Note that
G

i

1 [a,s]) for By < b is essentially the same case.) Here

Gy

i

[a,b] - G].
In the case that s = 1, the following lemma characterizes the

dual cone Fh+]. Note that it holds regardless of the form of Gl'

1

Lemma 2.4.3: Lets =1, let ne€R™ ', and let A = inf wu(x;)

Gy

for i = 0,1. Then we€g ., if and only if Ay > 0 and

+1
A + (]—p]))\o > 0.
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Proof: Assume first that = EFR+]. Then setting o = 6X € x for

0
any x,€ G0 yields 0 < n'y = n'u(xo). Hence o > 0. Similarly,
setting o = p]dx] + (1-p])5XO for any Xy €G, and xoegeo yields

0<w'py = p1n'u(x1) + (1—p1)n'u(x0). Hence pyxq + (1-p1)A0 > 0.

Assume next that A, > 0 and PiAq * (l—p])x0 > 0. Now let

0
b
p = [ u(x)do(x) for any o = yg€z (where g€z and y > 0). Note that
a
b
if A, > 0, then 'y = [ n'u(x)do(x) > 0. Assume now that Ay < 0.
a
b
Then n'py = fan'u(x)do(x) > U(G]))\] + G(GO)AO

vie(G)ay + [1-2(6) a3

1%

yipyaqg + [1-p]]x0} > 0.

- Thus n-EPm+] and the lemma is proved.

The following theorem provides a converse to theorem 2.4.1 in
the case that s = 1, either a or b EG], and g(G]) <Py In order
to prove the theorem, the following preliminary lemma is needed.'
It is essentially a statement that Ugs -« U form an e*tended

Tchebycheff system of order 1.

Lemma 2.4.4: letr<s<m-r+ 1, let {x],...,xs}cz [a,b], and
let u'(x) = (0, 1, 2x,...,mxm'])' denote the derivative vector of
u(x). Then the vectors u'(x]),...,u’(xr), u(x]),...,u(xs) are

linearly independent.

Proof: To demonstrate independence, choose additional points

Xs+1""’xm—r+1 and consider the determinant

€3



A = [u(x]), u'(x]),...,u(xr), u'(xr), u(xr+]),...,u(xm+1;r)l
) 113'“(x1), [ulxyre) - ulxp)Tsoonulxg ), Tulxpre) - ulx )],
u(xrﬂ),...,u(xmﬂ_r)l/er |
= lig !u(x]), u(x]+€),...,U(Xr), u(xr+e),vu(xr+]),...,u(xm+]_r){/er.
Now let t],...,tm+] denote the points

Xys Xq F €5.00sX s X_ + €, X eeesX .
1° 71 > e T e o o m+l-r

Then A = 1im I (t. - ti)/er
e+0 I<i<j<m+l 9
- 1 (x,-x)% @ (x, - x)° # 0.
l<i<jer 3T I<k<nsmtlor

Thus the vectors comprising the colums of A must be independent so

that the proof is complete.

Theorem 2.4.5: Let s = 1 and either a or be;G]. If I(g) < m,

b
then u = fau(x)dg(x) € M -

Proof: Note first that the proof need only be carried out for

I(g)
I(g)

= (uo,...,um) €3 M ;- Now in the case that IO(Support(g)) < m,

m. The conclusion will follow immediately in the case that

it

2 < m. For then, (uO”"’uz)' €3 Mot implies that

theorem 2.2.4(i) (with E = [a,b]) implies that n €3 Mm+1' Thus the
theorem need only be proven for the case I(g) =m < IO(Support(g)).
It will be assumed that G, = (a],b] for a > a. The proof for
G1 = [a,sl) and 3] < b proceeds exactly the same except that 8]

replaces aq-
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By inspection, there are precisely three possible ways to
achieve I(g) = m < IO(Support(g)). A11 of them require g(G1) = Pq-
For the first possibility, m = 2k and Support(g) consists of k
poihts from (a,b) - {a]} as well as the point oy For the second,
m = 2k and Support(g) consists of k - 1 points from (a,b) - {a]}, the
point s and both endpoints. For the final possibility, m = 2k + 1
and Support(g) consists of k points from (a,b) - {a]}, the point a,,
and exactly one endpoint.

For each of these cases it will bevargued that there exists a
polynomial Q(x) = v'u(x) such that Q(x) > 0 on G, and Q(x) > 1 on
[a,b] - G, with equality precisely on Support(g). Then setting

e = (1, 0,...,0)" and = = [v + (p—])eO]/p yields = Eph+1 - {0}

b
(according to lemma 2.4.3) and w'n = [ w'u(x)de(x) = (1-p)1+p(1-1/p)=0

a
so that u €9 Mm+1’

The existence of the polynomial Q(x) will be demonstrated only
for the second possible case: m = 2k and
Support(g) = {a, b, ays X]”"’Xk-l}’ where X <eee< xk_]. The
other two cases are readily proven with only minor modifications to
the proof of this case.

First let r denote the number of support points contained in
(a,a]). The polynomial Q(x) = v'u(x) must satisfy the equations
Q(a) = Q(a]) = Q(x]) =,..= Q(xr) = 1, the equations
Q(b) = Q(xr+1) =...= Q(xk_]) = 0, and the equations

Q'(x]) =,..= Q‘(xk_]) = 0. Thus v must solve the linear system
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uo(a) um(a) Vg = | 1
UO(XI) um(x] L
. Vﬁ
uy(x,.) - U (xp) 1
uo(a]) um(a]) 1
uO(Xr+1) . um(xr+]) 0
UpXpq) o (X q) 0
uo(b) um(b) 0
ué(x] ua(x]) 0
ué(xk_]) et u&(xk_]) | 0

According to lemma 2.4.4, the coefficient matrix of v in this system
is non-singular and so the polynomial Q(x) = v'u(x) does exist.

It remains to be demonstrated that Q(x) > 1 on [a,a]] and
Q(x) > 0 on (a],b]. Suppose that there exists an x which violates
either inequality. This would imply that Q'(x) has at least
(k-1) + (k+1) = m roots (counting multiplicities) which is impossible.
Finally, Q(x) cannot attain equality at a non-support point or else
Q'(x) has at least m+l roots. Thus the proof of the theorem is now
complete.

As already noted, this theorem need not hold if
G] = (a],B]) < (a,b). To illustrate this, consider the setting with

m = 4, with Support(g) - {ags8y} = {a, b, x¢} for aq < x; < 8y and
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with g(G]) = g({x]}) = Py- Then I(g) = 4 but p €35 Mm+1 only if
there exists a polynomial Q(x) as in the proof of theorem 2.4.5.
That is, there must exist a polynomial Q(x) such that Q(x) > 1
on [a,a]] U [B],b] and Q(x) > 0 on (a],B]) with equality precisely
at the support points of ¢.
Consider first the possibility that Support(g) = {a, b, ays X1}‘
Then
Q(x) =1 - C(x—a)(x—a1)(x-w)(x—b) =1 - C(x-w)q{x)
for some w e(x],81]. (If w > B held, then Q(B]) < 1 would hold which
is not allowed.) Now solving the necessary condition that 0 = Q'(x])
yields w = x; + q(x])/q'(x]). Then manipulating the requirement
W o< By yields the equivalent form
1 1 1 1

Q(X]) = X,-a + Xq-o; + X7-8; + x]-b > 0. Now note that the function

g can have at most three zereos. Note also that

g(ay-) = g(8y-) = g(b-) = -= and g(a+) = glay+) = g(g*) = +=. Thus
the function g must have exactly one zero in each of the intervals
(a,a]), (a],B]), and (s],b). Let x denote the zero which belongs

to (a7,8;). Then g(x;) > 0 can hold only if x, < x. That is, a

design £ with Support(g) = {a, b, aps Xq} achieves
b

po= [au(x)dg(x) €a M4 only if x; < x.
Reversing the roles of o and By yields the conclusion that a

design £ with Support(g) = {a, b, B> x]} achieves

b -~
p o= u(x)de(x) €s Mos1 only if xq > x. Furthermore, it is clear that
a

if Support(z) = {a, b, aps By x]} and £ is to represent a boundary

point, then it must be true that Xy = X
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The following theorem establishes the uniqueness of a representation

of any boundary moment point. It is analogous to theorem 2.2.4(ii).

Theorem 2.4.6: Let s = 1. Then u €3 Mm+1 if and only if it has a

unique representation g €=.

Proof: Assume first that u €Interior(M ,.). Then there must exist

m+1

H -
_ } belong to M .. If £ and ¢

- u
Hob] S Mpe7 SUCh that[ ] and[: £
Hm+1

Em+1

denote measures representing these two points of Mm+2, then both ¢ and

£ represent u 6Mm+1'
Assume next that u €3 Mm+] and that £ represents pu. First consider
the case that g(G]) < py- Now there exists m €R .4 - {0} such that

'y = 0. Let A = inf n'u(xi) for i = 0,1. According to lemma 2.4.3,
G.
;

‘g 2 0 and pyaq + (1-p)xy > 0. If A, > 0, then theorems 2.2.2(i1) and

1

2.2.4(i1) 1imply that £ is unique. If Ay < 0, then

b

[ wtu(x)de(x)
a

(o]
It
=

=
i

3~E(G])A] + []'g(G])]AO
> Ppyrg ¥ (l-p])xO > 0.

Thus Ay < 0 is impossible and £ is unique if g(G]) < Py

Now consider the case that E(Gl) = Py and

b
b= jau(x)dg(x)EB Mm+l' Then there exists me€p .4 - {0} such that
'y = 0. Let A = inf n'u(xi) for i = 0,1. Lemma 2.4.1(ii) implies
G.
that 1
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1

Support(g) <y

{XiffGil"'U(Xi) = ALl (2.4.3)
i

0 1

for any measure which represents u. Let A = {xo,...,xk} denote the
right hand side of (2.4.3). By now familiar derivative arguments, k
is maximized if G, = (u],81) < (a,b) and A consists of ay, 85 @, b,
and [(m + 1 - 4)/2] points from (a,b) - {a],B]}. Thus

k < 3 + [(m-3)/2] which is less than or equal tom unless m = 1.

In the special case that m = 1, the number k is seen to be 1 or less.
b k

Hence the linear system u = [ u(x)dg(x) = J u(x;)g, must yield a
a i=0

unique solution for the masses £ © E({xi}). Thus £ is unique and

the proof complete.

Note that the conclusion of this theorem holds for s = 1 regardiess
of the form of G]. Note also that theorems 2.4.5 and 2.4.6 provide a

sufficient condition for the solution of problem 2.1 in the special

b
case at hand. If I(g) <m, then n = { u(x)de(x) €3 L and £ must
a S

be unique. Thus the value of Mot ] is already determined by the values
1103--- )Um'

The following theorem provides a sufficient condition for the’

solution of problem 2.1 otherwise.

Theorem 2.4.7: Let s = 1 and either a or b EGl. Also, let

u EInterior(Mm+]). If £ is upper (lower) principal, then it attains
the maximum (minimum) value of Meoyp 2MONg all measures from Z which

represent u.
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Proof: Since I(¢) = m + 1, theorem 2.4.5 implies that

u
[11 ] €5 Wn+2' Thus £ is unique (with respect to Mm+2) and there
m+1]

exists (ﬂo,...,ﬂ , T
1

m m+1) th+2 - {0} such that

goﬂi“i B L

< 0 if ¢ is upper and =« >0

As in the proof of theorem 2.4.2, v m+1

m+1
if £ is lower principal. Now let £ be any other measure representing u.

b
As in the proof of theorem 2.4.2, u .y = [ u- q(x)dE(X) < u . iF
a

T < 0 and ﬁm ifw > 0. That is, £ attains the

mt +1 2 "m+1 m+1

maximum (minimum) value of Mt ] among all measures from 2 which

represent p if £ is upper (lower) principal.

Note that at this point the existence and uniqueness of the upper
and lower principal representations have been established. Also,
problem 2.1 has been solved for s = 1 when a or bEEG]. The following
theorem applies these results to the admissibility problem. It serves

as the converse to theorem 2.4.4.

1 and either a or bE(H. If either

2n and b € Support(z), then £ €= is admis-

Theorem 2.4.8: Let s

1]

a. I(g) <2norb. I(g)

sible for polynomial regression of degree n.

Proof: The proof follows immediately from theorems 2.1.1, 2.4.5,
2.4.6, and 2.4.7.

Note that all admissible designs are unique according to theorem
2.4.6.

Note also that the designs £ and £ given in example 2.4.1 are

jnadmissible and admissible (respectively) for quadratic regression.
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In fact, both designs achieve pn = (1, 0, 1/3, 0)' while Mg = 1/3

and ﬁ4 = 7/12.

The following example provides an instance in which theorem 2.4.8

does not hold for G, = (a1’8]) < (a,b).

Example 2.4.2: Let [a,b] = [-2,5], G1 = (-1,1), Py = 1/5, and n = 2.

Consider first the measure g = %{6_2 T8 gt 8yt syt 65). Then

g(G1) = py SO that I(g) = I.(Support(g) - aG]) = 4 and £ is upper

of
principal. However, & is not admissible for quadratic regression. If
if were, there would exist a fourth degree polynomial Q(x) such that
Q(x) > 1 for x €[-2,-1] u [1,5] and Q(x) > O for x €(-1,1) with equality
on Support(z). Now solving the linear system corresponding to the
conditions Q(-2) = Q(-1) = Q(1) = 1 and Q(0) = Q'(0) = 0 yields

Q(x) = x2(5—x2)/4. But then Q(x) < 1 for 1 < x < 5. Since the

required polynomial Q(x) does not exist, £ must be inadmissible.

This example leads to the consideration of problem 2.2 in the
present context. As in section 2.2, it may happen that the unrestricted
solution EO satisfies the restriction EO(G]) < Py Otherwise, further
analysis is needed. Methods to solve problem 2.2 when EO(G]) > Py will
now be indicated for the cases n = 1 and 2.

For linear regression, Support(éo) = {a,b}. Thus if
Gy = (a],81)<: (a,b), then EOGEE and problem 2.2 is trivially solved.
Assume now that a or béiG]; in particular, assume that G, = (a],b].

If EO(G]) > py» then it must be true that

I(£) < 2 < I (Support(g)) and hence Support(g) = {a, b, ar}. Also,

(
0
E({b}) = pys E({ay}) = [uy - a- p,(b-a)l/(ey-a), and
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b
E({a}) =1 -py- E({ay}) must hold in order to satisfy [ u{x)dg(x) = u.
a

For quadratic regression, Support(éo) = {a, b, x1} where a < Xq < b
and EO(Gl) > Py Consider first the case that a or b EG]. In
particular, G] = (a1,b] without loss of generality. The first pos-
sibility is that & = posa + p]Sy + 026a] + pléb’ where a <y < oq- Then

b

b= [ ulx)dE(x) = pgula) +pquly) + opulag) + pyu(b)  (2.4.4)
d

implies that 0 = |u(a), u(a]), TR p]u(b), u(y)| = P(y). Thus y must
be a root of the polynomial P and the mass distribution must solve
(2.4.4). The second possibility is that E = pgda ¥ plﬁy + pzﬁa] + 935b;

where a; <Y < b. Then

b v
po= [ u(x)de(x) = pOU(a) + D]U(Y) + ozu(a1) + 03u(b) and py + 03 = Py
a

imply that the mass distribution must solve

u(@) uly)  ule) w7 [eg] = [ (2.4.5)
0 1 0 1 : Py
°3
and hence 0 = [u(a) u(a]) u(b) n uly) - P(y) must hold.
0 0 1 Py 1
Thus y must be a root of the polynomial P and phe mass distribution
must solve (2.4.5).
Example 2.4.1 will serve to illustrate the first of these two

possibilities. Recall that [a,b] = [-2,1], that G = (0,1], that

P =-%, and that g = %6_] + %60 + %6]. The standard calculations for
- . - _ 4 125 33 = -
B, yield £y = er8p ¥ TeRo1ss T ez s Fol&y) T T/ >

-1
and £3¢3. Now the form of £, suggests that Support(E) = (-2, y, 0, 1}
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where -2 <y < 0 and EO({l}) = Py Then the roots of

P(y) = Ju(-2), u(0), u -~ %u(]), u(y)| are 0, -2, and y = -1/4.
Solution of (2.4.4) yields the design £ given in example 2.4.1.
Recall that £ is admissible and hence solves problem 2.2 for this
example. It may be worth noting the result if the possibility that
0 <y <1 is considered for this example. It turns out that the only

real root of P(y) = |u(-2) u(0) u(l) w u(y) | is y = 1. Thus
0 0 1 1/5 1

the method fails when this incorrect form of Support(z) is proposed.
Now consider the case that G] = (a],B]) < (a,b). The first pos—v

sibility is that £ = pg8, * Pys, * o8, ppbps where a, <Yy < By.

1
Then

wo= [ ulx)dE(x) = pgu(a) + pyuly) + pqulay) + opu(b) (2.4.6)

implies that 0 = ju(a), u(a]), u(b), u - p]u(y)( = P(y). Thus y must
be a root of the polynomial P and the mass distribution must solve
(2.4.6). The second possibility is that a, is replaced by 8, in the
preceeding. The final possibility is that

£ = poaa + p]Ga] + p]6y + 0268] + p36b. If £ is to have this form,

there must exist a quartic polynomial Q(x) such that Q(x) > 1 for
xe.[a,a]] ] [B],b] and Q(x) > 0 for x G(a],B]) with equality at the
support points.‘ This requirement implies that

1 ! ! —lB-= g(y) which has one zero in the interval,

0= + + +
y-a  y-op  y-B ¥

(a],B]). Once y is determined, the mass distribution may be obtained

by solving the linear system
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b
u = f U(X)dé(x) = pOU(a) + pﬂl(a]) + p]u(}’) + QZU(B]) + p3U(b).
a

Example 2.4.2 will now be used to illustrate this approach.

Recall that [a,b] = [-2,5], that G] = (-1,1), that P~ 1/5, and that

1 :
£ = 5(6_2 Ot syt ¢t 65) is inadmissible. Note that
uw = (1, 3/5, 31/5, 117/5)'. The standard calculations for EO yield

approximately EO = .29535_, + .48756_3/]4 + .217265. Thus

EO(G]) > Py and EO ¢=. To consider the first possibility, note that
P(y) = |u(-2), u(-1), u(5), n - %u(y){ has no roots y € (-1,1). Thus
the possibility that ¢ = p05_2 + p]6y + p]é_] + p265 is ruled out.
Likewise ¢ = 006-24.p16y + p]5] + p265 may be ruled out. That leaves

only the possibility that £ = pgs 5 + oq6_ + P18, + 0y8; + pydy.

1 1 1 1
Recall that y must be a zero of g{y) = 2 + (za + 7o + 75

Approximately, y = .1299. Then solving for the mass distribution
yields °0 ~.1981, Py~ .2161, Py~ .1857, and Py~ .2001. The
fact that the required polynomial Q(x) exists also implies that ¢ is

admissible. Note finally that g = 128.6 < 128.6340 ~ ¢ (Thus 13

4
is only a slight improvement over £ in this example.)

The preceding discussion provides means to solve problem 2.2
for linear and quadratic regression when s = 1. For n > 3, the
solution is more difficult to obtain.

Sufficient conditions for the solution of problem 2.1 will now
be sketched for the case that s = 2, that Gy = [a,B]), and that
62 = (az,b], where 81 < an. The results obtained will closely

parallel those for the case s = 1 when a or b EG].



75

N

The following lemma characterizes the dual cone Pt when
Py * Py < 1. It holds regardless of the forms of G] and 62. This

lemma is analogous to lemma 2.4.3.

Lemma 2.4.5: Let s = 2 and Pyt Py < 1. Also let n¢ R"ﬁq and

let Ay = inf n‘u(xi) for i =0, 1, 2. Then mep if and only if

G

mt+1

the inequalities

i.

)\O_?_O,
ii. Pidg ¥ (1—pi)xo > 0 for i = 1,2, and
P11, pydg Fppr, ¥ (1~p]—p2)xo >0

all hold.

Proof: The proof closely resembles that of lemma 2.4.3. Necessity

is easily proved by considering measures SX, measures piéx + (1~p1)6*
i 0
» where the

for i = 1, 2, and measures P16y t Pys, + (1 - S p2)6x
1

2 0

points xjeiGi for i =0, 1, 2.

To prove sufficiency, first note that if A] > 0 and XZ > 0, then

b

w'y = [ w'u(x)do(x) > 0 for any c€z. Consider next the case that
a

S 0 and 1, > 0. If X, <2y also holds, then

mu > y[pgdy e, Y (l—pl—pz)xo] >0 for any o = ygez. If 2y <2,
also holds, then wn'u 3_y[p]A] + (1—p])AO] > 0. For the case that
A

> 0 and A, < 0, a similar argument shows that ='u > O. Finally,

1 2
the case A < 0 and A, < 0 yields n'u z_y[p]A] tpyh, t (1—p]-p2)xo]g_0.
. b
Thus 'y > O for any w = jau(x)dc(x)e7nm+]. That is, T€P 44 and the

proof is complete.
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The following theorem provides a converse to theorem 2.4.1 in

the case that s = 1, that G, = [a,;), that G, = (a'z,b], that
g(G]) < Py and that g(GZ) < Py Thus it is analogous to theorem
2.4.5.

Theorem 2.4.9: Let s = 2, let G] = [a,s]), and let G2 = (az,b].

b
If I(g) <m, then p = [ u(x)de(x) e Mo
1 .

Proof: As argued for theorem 2.4.5, the proof need only be
carried out in the case that IO(Support(g)) >m=I(g) =m. If
IO(Support(g) - aG]) < m also holds, then theorem 2.4.5 implies
that p€ 3 Mm+1' The same is true if IO(Support(g) - aGZ) < m
Thus the theorem need only be proven for the case that I(g) =m,
that IO(Support(g) - aG]) > m, and that IO(Support(g) - aGZ) > m.

By inspection, there are precisely three possible ways for this
case to arise. A1l of them require E(Gi) = p; for i=1, 2 and
Py + Py < 1. The first possibi]ity, m = 2k and Support(g) consists
of k points from (a,b) - {8],a2} as well as the points By and oy
For the second, m = 2k and Support(&) consists of k - 1 points from
(a,b) - {BT’aZ}’ the points B and %5 and both endpoints. For thg
final possibility, m = 2k + 1 and Support(¢) consists of k points
from (a,b) - {B],az}, the points 8, and a,, and exactly one endpoint.

For each of these cases, it will be argued that there exists a
polynomial P(x) = w'u(x) with the following four properties:

i. P(x) > A5 on Gi for i = 1,2,

2
it. P(x)>1 on [a,b]l- y

G; with equality precisely on Support(g),
i=1
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1.y <1 for 1 =1,2, and

This will imply that mER, according to lemma 2.4.5 and

+1
'y = Py + Pohy t (1 - Py - pz) = 0 so that uea M_,,.

The existence of P(x) will be demonstrated only for the second
possible case: m = 2k and Support(z) = {a, b, Bys a9s X]""’Xk—l}'
The other two cases are readily proven with only minor modifications
to the proof of this case.

First Tet {xy,....x.} < (a,8;), Tet {x X3 < (By50,), and

r+1*°°

let {x "Xk-i}(: (az,b). Then the polynomial P(x) = ='u(x) must

t+1°°
be such that w, Aqe and Ao solve the linear system
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uo(a) - um(a) -1 0 ™| = 0
uo(x]) ... “m(x1) -1 0 ) 0
m
. ) m
UO(Xr> e um(xr) -1 0 A 0
uO(B]) e um(81) 0 0 LAZJ 1
uo(xr+]) . um(xr+]) 0 0 T
uO(xt) et um(xt) 0 0 i
uo(az) um(a2) 0 0 1
UO(Xt+1) ... um(xt+]) 0 -1 0
UO(Xk-l) um(xk_]) 0o -1 0
uo(b) . um(b 0 -1 0
uo(x1) u'(x]) 0 0 0
uOka_]) - ua(xk_]) | 0 0 0
0 ... 0 Py Py Py *P,- 11. (?.4.7)

It will be shown that the coefficient matrix U in this linear system
is non-singular. In fact, elementary manipulations on the determinant

|u| yield
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[Ul = Ju(a), u(xq)s..osulx,) ulBy)s ulx yq)se-vsulx)s ue,), ulxgq),
‘pzo'pz 9---a'p23 O s 0 PIRIC IR Y 0 s O ] p]:

e u(xk_]),u(b), u (x1),...,u'(xk_])
c+s Py 5 Pyos 0 ..., O

If this determinant were to vanish, then there would exist we R”Hq
such that
_ e
uo(a) e um(a) Wy = -P2
UO(Xl .. um(x]) : —P2
I KN
uO(Xr) um(xr) —PZ
ug(8y) - un(8y) 0
uO(XrH) : um(xr+1) 0
uo(xt) . um(xt) 0
uo(az) um(az) 0
UgWpa) - Uy (X e
up(Xyeq) -o- up(xyq) "1
uO(b) . um(b) P]
ué(x]) ... u&(x]) 0
] ]
ugx, 1) e uplxy ) 0




It will now be argued that no such w can exist. If it did, then

consider the polynomial Q(x) = w'u(x). It has the properties that

Q(a) = Q(xq) =...= Q(x,) = -P,, that
Q(8;) = Qlx,yq) =---= Qx;) = Qle,) = 0, that
Q(Xm) =...= Q(x,_¢) = Q(b) = py, and that Q'(x;) =...= Q' (x,_7) = O.

Hence Q'(x) must vanish at least once between every adjacent pair of
support points with the possible exception of the pairs (xr,81) and
(a2’xt+1)' In the case that Q'(B]) < 0, the facts that Q(Xr) = =Py
and Q(B]) = 0 imply that Q'(x) must also vanish somewhere in (xr,s]).
If Q'(s]) > 0, then Q'(x) must have an additional root somewhere in

(8],x ) or else Q(Xt+]) = py > 0 s jmpossible. Thus, in any case,

t+1
Q' (x) has at least (k-1) + k + 1

m roots. Since Q'(x) is a non-
trivial polynomial of degree m - 1, this contradiction implies that
no such we R"Hq can exist. Hence |U| # 0 and the polynomial
P(x) = n'u(x) does exist.

The fact that a solution to (2.4.7) exists yields
Piry * Pohy * (1 - Py - p2) = 0. Since py +p, <1, it must be true
that at least one of the Ai's is negative. Without loss of generality,
it may be assumed fhaf Ay < 0. Suppose that x, > 1. Then P(x) would
have to havé the same properties as Q(x) which has been shown to be’

impossible. Thus A, <1 fori=1, 2.

Now it must be true that P(x) > x, on G, for i =1, 2 or else

2
P'(x) has at least m roots. Likewise, P(x) > 1 on [a,b] - U G, or
i=1

else P'(x) has at least m + 1 roots. Furthermore, P(x) cannot attain
equality at a non-support point or else P'(x) has at least m + 1 roots.
Thus P(x) satisfies all the required properties and the proof of the

theorem is complete.
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The following theorem establishes the uniqueness of any boundary

moment point. It is exactly analogous to theorem 2.4.6.

Theorem 2.4.10: Let s =1, let G] = [a,B]), and let G2 = (az,b].

Then u€ 3 Mer1 if and only if it has a unique representation g€ =.

Proof: The proof of the sufficiency proceeds exactly as in
theorem 2.4.6.

To prove the necessity, first note that theorem 2.4.6 implies that
£ is unique unless g(Gi) = p; for i =1, 2 and p; + p, < 1. Now
consider this case. There exist51reyh+] - {0} such that 'y = O.

Let X

that

0’ A and Ao be as in lemma 2.4.1(ii). Then this lemma implies

Support(z) C:iSO{XiGEGiIW'U(Xi) = Ay) -(2.4.8)
for any measure which represents u. Let A = {xo,...,xk} denote the
right hand side of (2.4.8). By now familiar derivative arguments, k
is maximized if A consists of the points Bys o> s b, and
[(m + 1 - 4)/2] points from (a,b) - {B],az}. Thus k<3 + [(m-3)/2] <m
unless m = 1. In the special case that m = 1, the number k is seen to

be 1 or less. The remainder of the proof follows that of theorem 2.4.6

exactly. Thus the theorem is proved.

Note that at this point theorems 2.4.9 and 2.4.10 yield the
conclusion that if I(g) < m, then £ solves problem 2.1 for the specia?
case at hand. The following theorem provides a sufficient condition
for the solution of problem 2.1 when I(g) > m. It is analogous to

theorem 2.4.7.



Theorem 2.4.11: Let s = 2, let G] = [a,sl), and let G2 = (az,b].

Also let pe Interior(Mm+]). If £ is upper (lower) principal, then it

1)

attains the maximum (minimum) value of Hpe1 @WONg all measures from =

which represent u.
Proof: The proof follows that of theorem 2.4.7 verbatim.

Note that the existence and uniqueness of the upper and Tower
principal representations have now been established. Also, problem _
2.1 has been solved for s = 2 when G] = [a,B]) and 62 = (az,b]. The
following theorem applies these results to the admissibility probiem.
It serves as a converse to theorem 2.4.4 and an analogue to theorem

2.4.8.

Theorem 2.4.12: Let s = 2, let G] = [a,B]), and let G2 = (az,b].

If either a. I(&) < 2nor b. I(g) = 2n and b€ Support(g), then g€ &

is admissible.

Proof: The proof is an immediate consequence of theorems 2.1.1,
2.4.9, 2.4.10, and 2.4.11.
Note that all admissible designs are unique according to theorem

2.4.10.

Problem 2.2 will now be briefly considered in the present context.

As in section 2.2, it may happen that the unrestricted solution

£0
the two restrictions imposed. Let 516 =({i}) be the solution under

€

[n

The next level would be to solve problem 2.2 with only one of

only the restriction that g(Gi) < p;e If éie =, then it is the

solution to problem 2.2. Otherwise,

82
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Support(g) = {a, b, Bys @oo X]""’Xn-l} and further analysis is
needed. Methods to solve problem 2.2 will now be indicated for
n=1and 2.

For linear regression, the designs EO’ E], and 52 have already
been exhibited. If all of them do nat belong to =, then
Support(£) = {a, b, Bys oo}t Also, £({a}) = Py> E({b}) = Pos
£({8y1) = (ug - oy = pqa - pyb)/(Bg - @), and
E({az}) =1-py-p,- E({B]}) must hold in order to satisfy

b
[ u(x)dg(x) = n.
a

For quadratic regression, methods to determine 50’ é], and 52

have already been indicated. If all of them do not belong to =,

then Support(g) = {a, b, Bys a2; yr. If a <y <g; is to hold, then

y must be a root of P(y) = [u(a), u(8y), ulay)s w-poulb), uly)
1, 0, 0, o , 1

if By <Y <y is to hold, then y must be a root of
P(y) = lu(By), uley)s w-pqula)-poulb), uly)]. If ay <y <bis to
hold, then y must be a root of

P(y) = u(B]), u(az), u(b), u—p]u(a), u(y) In any of these

O s O s ] s O s ]
cases, the mass distribution of £ is readily determined from the
b
Tinear system u = [ u(x)de(x) along with the constraints E(Gi) = p;
a

for i =1, 2.
These methods may be illustrated by a modified version of
example 2.4.1 with s = 2, with G] = [-2,-1), with 62 = (0,1], with

Py = .02, and with Py = 1/5. Recall that



_ g 125 3.,

€y = T62%-2 * Te2®-1/5 * Te201 € = and that

. 5 128 35 T

£, = 71002 * 7105174 * 370%0 * 5014 since £5(Gq) > py. The same

methods yield approximately
£y = .026_2 + .15816_] + ‘747]6—]8/109 + .07486]. Thus
51(62) = .0748 < p, implies that € = E]e z. Furthermore I(E]) = 4

and E] is upper so theorem 2.4.12 implies that 51 solves probiem 2.2

b
for this example. Note also that | x4dél(x) ~ 5535 > 1/3 = y,.
a

84



CHAPTER II1I
D-OPTIMALITY

3.1 General Results

While the concept of admissibility induces a partial ordering on the
set of information matrices, a specific optimal design criterion yields
an essentially complete ordering on this set. Sych a criterion is often
specified in terms of a real-valued function & which is defined on the
set of non-negative definite matrices. Thus a ¢-optimal design £ would
achieve a minimum value for @(M°](g)).

An often-used criterion is that of "D-optimality". A D-optimal
design should attain the minimum value of the determinant IM—](g)l.

Thus a rationale for D-optimality might be to minimize the generalized
volume of a classical confidence region for ¢ €B2n+]. The following

definition makes the criterion explicit.

Definition 3.1.1: A design ¢ €= ig D-optimal if and only if it

attains the minimum possible value of IM-](E)[. Equivalently, it
maximizes |[M(z)].

Of course for non-triviality it must be assumed that there exists
at Teast one design ¢ €= such that M(g) is non-singular. |

The question of D-optimality has been addressed by many authors in
the unrestricted design setting where = = GRS the set of all probabi1ity

measures on X Guest ('58) and Hoel ('58) have considered the problem
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for polynomial regression on an interval. Kiefer and Wolfowitz ('60)
have provided a general equivalence theorem for D-optimality. More
recently, Cook and Thibodeau ('80) have treated D-optimality in the
case that = arises from the marginal restriction problem. Also, Wynn
('77) has considered D-optimality in the (g,y)-problem setting with
¢ = 0.

It should be noted that the relationship between admissibility
and D-optimality for po]ynomia]iregression of degree n is not as
helpful in the restricted design setting as it was in the unrestricted.
For z = Egs an admissible design can have no more than n + 1 support
points and a D-optimal design must have at Teast that many. As a
consequence, |M(g)| factors into the square of a Vandermonde determinant
involving n + 1 points and the product of the corresponding masses.
This result is key to the works of Guest ('58) and Hoel ('58). The
developments of sections 2.2, 2.3, and 2.4 make it clear that an
admissible restricted design for polynomial regression may have more
than n + 1 support points. Subsequent examples will include situations
where a D-optimal design's support does include more than n + 1 points.

The main intent of the present section is to adapt the Kiefer and
Wolfowitz equivalence result to the problem of determining a D-optimal
restricted design. The later sections will provide examples of
D-optimal designs under various restrictions. These examples should
serve to indicate how D-optimality depends on the particular form of
restriction.

The equivalence result of theorem 3.1.1 will involve the "variance

function" of a design.
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Definition 3.1.2: The variance function of a design £ €= with

non-singular information matrix is d(x,g) = f(x)'M"](g)f(x).

The following lemmas will be used to prove theorem 3.1.1. Both

they and the theorem follow Federov ('72).
Lemma 3.1.1: 1. [d(x,£)dg(x) = n + 1 for any g €=&.
pa

ii. min max [ d(x,£)dg(x) > n + 1.
£ g

Proof: 1i. The proof of the first part involves only an elementary
calculation and may be found in Federov ('72).

ii. For any £ €z, max [ d(x,£)dg(x) > [ d(x,£)dE(x) = n + 1. Hence
E X Z

min max [ d{x,£)dg(x) > n + 1.
g £

Lemma 3.1.2: 1i. 1log|M(g)| is strictly concave in E.

i1, fh010g] (1M(Eg) + W& |) g = tr W (g M(E) - (n+1) for any

designs 50’ EEZ.

Proof: A proof of both parts is given in Federov ('72).

Theorem 3.1.1: ]M(go)l = max|M(¢g)| if and only if
EE€=

max [ d(x,go)dg(x) = min max [ d(x,£)de(x) =n + 1.
E€E X EEE E€R X

Proof: First note that |M(go){ = max|M(g)| if and only if
£

log|M(gy)| = max Tog|M(g)].
£
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. . d
If g, is D-optimal, then O 3_a§{1ogi(1—y)M(€0) + YM(E)I}Yzo for
any £ €=. According to lemma 3.1.2(i1) this inequality becomes

n+ 1 e M M(E) = tr M (gg) [ FUX)F(x) de(x) = [ d(x.5q)dE(x)
2 x

for any £ €5. Then application of lemma 3.1.1(ii) to this inequality
yields

min max [ d(x,g)dg(x) > n + 1 > max [ d(x,g4)de(x)
E & X £ X

> min max [ d(x,£)dg(x).
E £ X
Thus necessity is proved.

To prove sufficiency, suppose that £0 is not D-optimal. Then there
must exist g' €2 such that |[M(g')| > |M(¢)|. Then lemma 3.1.2(i)

. . d ' 3
implies that 0 < a§{1091(]‘Y)M(€O) + yM(g )]}Y:O. That is,

n+1<{ d(x,go)dg'(x) < max | d(x,go)dg(x). Thus the conclusion of
x £ X

the theorem cannot hold if &0 is not D-optimal so that the theorem is

proved.

It may be noted that an analogous theorem is readily proven for
other optimality criteria which require that @(M“1(g)) be minimized.
In the more general case, the variance function should be replaced by

d(x,£) = -f(x)'grade(M(g))f(x). Note also that if = = then

EO,

max [ d(x,£)dg(x) = max d(x,£) and theorem 3.1.1 is precisely the
E€E X P

Kiefer and Wolfowitz result.

3.2 The E-Problem

As already remarked, the E-problem may be considered as an

unrestricted design setting with ' = E. Thus the Kiefer and Holfowitz

equivalence result is obtained.
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Corollary 3.2.1: [M(gy)| = max [M(g)[ if and only if
g€s=

max d(x,£5) = min max d(x,g) = n + 1.
E gex E

Proof: For the E-problem, max [ d(x,£)dg(x) = max d(x,E)
g€s E E

for any é €=2. Thus the corollary follows immediately from theorem
3.1.1.
Examples will now be given to show how the E-problem restriction

can affect known D-optimality results.

[-1,1].

The unrestricted D-optimal design is well known to be Eg = 5(6_] + 6]),

Consider first the setting of linear regression on %

By definition of the E-problem, {-1,1} ¢ E so that EC)GE and is
D-optimal no matter what restrictions govern the allocation of
observations within (-1,1).

The problem of quadratic regression on x = [-1,1] gives more
interesting results. The following derivation of the D-optimal design
will be summarized by lemma 3.2.1.

The solution for the D-optimal designvwill first be obtained in
‘the case that E = [-1,a] U [B,1], where -8 < a < 0. The solution
for general E will follow readily. Now if IM(gO)l > 0 is to hold,
then Support(go) must include at least three points. In order for
£y to be admissible, theorem 2.2.6(i1) requires that its support
consists of no more than three points unless
Support(go) = {-1, a, B, 1}.

In the case that go = pOGX + pléx + 026X s where
0 1 2’

=1 2 Xp <Xy < X < 1, the determinant



2 2 2 2
IM(50)1= PoP1Po 1 1 1 = Dop]DZ(X]"Xo) (XZ—XO) (Xz"x]) .
X Xp X
2 2
O Y
Thus Py = P71 = 0y = 1/3 and Xg = ~X, = -1 are required for IM(gO)l to

be maximized. It remains to maximize (1—x%) by choice of
X €(-1,1) NE = (-1,a] U[B,1), where -8 < a < 0. Thus X; = @ if £9
is to be D-optimal.

It will now be verified that £, = +(6_; + §_+ &;) is D-optimal
under a certain condition on o and 8. It will be seen that the
resultant condition quantifies the intuitive idea that g should be much

further from zero than a. As derived by Guest ('58),

3 dgg) = 1500 + L) + 15(x) (3.2.1)
where Ly(x) = (x-1)(x-a)/2(1+a), where L;(x) = (1-x2)/(1-62), and

(x+1)(x-a)/2(1-a) are the Lagrange polynomials cor-

i

where Lz(x)
responding to -1, a, 1. Now corollary 3.1.1 implies that

d(-],go) = d(a,go) = d(],go) = 3 and that d(x,go) < 3 for all

X E[—i,a] U [B,1] are the conditions for &0 to be D-optimal. Hence the
variance function is a quartic such that

1

3 d(x,go) = 1 + C{x+1)(x-a)(x-w)(x-1), (3.2.2)

where C > 0 and o < w < 8. Equating the leading and trailing coef-

ficients from (3.2.1) and (3.2.2) yields C = (3 + o)™ and
W = a(az - 5)/(3 + az). Thus &9 is D-optimal if and only if
B >WwW= a(a2 - 5)/(3 + az). It may be noted that if
_ 2 2 _ 1 ) .
8 = afa” - 5)/(3 + o), then gy = x{s_; + [(1-v)s  + yaB] f 8§11 1s
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D-optimal for any y €[0,1]. It may also be verified by elementary
calculations that —a f_a(az - 5)/(3 + az) < 1 holds for allae€[-1,0].
If -a <8 f_a(az - 5)/(3 + az), then it must be true that
Support(gg) = {~1, a, B, 1} as already remarked. Thus it only remains
to determine the optimal mass distribution among these points. Let
Pgs P1> Pps P3 denote the masses &0 assigns to the points -1, a, 8, 1
(respectively). Here pg ¥ Pyt Py t o3 = 1. Also, let each Vi denote
the Vandermonde determinant relative to the three points obtained by
deleting the point corresponding to p; from Support(go). According to
32
I p.V:. This function of
. e
i=0 j=0
J#i

P> P1> Pps P3 may be maximized subject to °o + Py + Py + p3 = 1 by

S~ Ww

the Binet-Cauchy formula, [M(EO)I =

Lagrange's method.
The resultant system of equations may be repeatedly manipulated to
yield the solution
3 -1
12 2 .

j=0 ,

j#i
Implementation of this implicit solution may be accomplished by

an interative procedure. If p§k) for j = 0, 1, 2, 3 denote the values

at stage k, the values at stage k+1 may be determined from

3
okt o T2 {.Z v?/p(k)§ T ofori=o0,1, 2,3
Such a prqcedure has been programmed. Results of several runs appear

in table 3.2.1. The stopping criterion used was

3
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Table 3.2.1: D-Optimal Design Masses on {-1, o, B, 1}

for Quadratic Regression

a R k pék)
-.1 N 0 .2
387 .3325
0 .33
268 .3325
0 .7
359 .3325
-.1 .165 0 .25
220 .3333
-.1 .2 0 .33
301
-.5 .5 0 .6
16 L3114
0 .3
16 3114
-.5 .65 0 .25
13 .3242
0 .5
14 .3242
-.5 9 0 25
3(1)
-.9 9 0 .33
8 .2630
0 .45
9 .2630

(1)

(Z)Note that this distribution is improper (by intention).

.16
.2370

.2370

‘The procedure was truncated whenever a pgk) < 0.

. 1886

1886
-0695
-0695

<0

.16
.2370

.2370

3114
_2(2)
3114

-3096
3096

.35
.2630

-2630

92
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Some features of these tabled results deserve note. The procedure
seems to be insensitive to the starting distribution. In fact, even
the improper initial distribution corresponding to footnote (2) led to
a solution. Also, the further o« and g are from zero, the faster the

convergence. Finally, the procedure seems to have an interesting

diagnostic feature. Recall that if B > a(a2 - 5)/(3 + az)

£g = %(6_] +5, t 61) is D-optimal. For the two table entries cor-

responding to footnote (1), this is the case. Notice that in each of

, then

these instances, the procedure truncated because a pgk) < 0. The

precediﬁg arguments are summarized by the following lemma.

Lemma 3.2.1: Let {-1,1} < E ¢[-1,1], let a=max{((-1,01 N E), and let

g = min([0,1) NE).

i. Ifg 3_a(a2 - 5)/(3 + az), then the D-optimal design for quadratic

regression is £y = %{6_] st 6]).

.. 2 _ ' 2 =l V
ii. Ifaig(s 5)/3 + g¢), then €0 3(6_] +<SB+<S]).
i1, If 8(8% - 5)/(3 + B2) < w < 8 < al(a® - 5)/(3 + &%), then
EO = pOS_] + p]Sa + p258 + p36]. The mass distribution must satisfy

i i
J#i

Vandermonde determinant relative to the three support points not cor-

1 20 3 5 -1 .
p:= =5 - V z Vi/o- for i = 0, 1, 2,3, where each V., is the
3 350 1779 i

responding to Pi-

Proof: The preceding arguments have proven the Temma for
E=1[-1,0a] U[B,1]. The resultant D-optimal designs satisfy &g €z for
any E such that o = max((-1,0] NE) and 8 = min([0,1) NE). Thus the
designs gy are D-optimal for the (possibly) more restrictive case and

the lemma is proved.
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Note that both parts i. and ii. yield g, = %(s_q + 6, + 6;) if 0 €E.
Note also that the case a = -8 < 0 furnishes an example where the
D-optimal design for polynomial regression of degree n is supported by
more than n + 1 points.

For polynomial regression of degree n > 2, similar methods may be
used to determine &0 The following simple example will show how
corollary 3.2.1 may be implemented for regression on two variables.

Modified versions of this example will follow in sections 3.3 and 3.4.

Example 3.2.1: Let X = {(x],xz)l—l < Xps Xy < 13 and

f(x],xz) = (],x],xz)'. If E=2, it is well known that the D-optimal
design assigns equal mass to the four corners of X. Now consider

the restriction that E = {{xy,x,)] [x; + Xo| <1} nx. (Such a
constraint on the control variables might be the result of experimental
limitation or governmental regulation.) A natural conjecture is that
the D-optimal design still assigns equal mass to the corners of E. Let
£o denote the measure assigning equal mass to these six corners. Then

M(gg) = [ 1 0 0 Jand
0 2/3 -1/3
0 -1/3 2/3

d(xq5%p360) = Flxq %) M F(xyax0) = 1+ 2(x5 + xx, + X5).
Now the contour d(x],xz;go) = 3 is an ellipse which contains E and
touches precisely at the six corners. Furthermore, d(x],nggo) <3
for all (x],xzy €E. Hence corollary 3.1.1 implies that &0 is
D-optimal.

The following example will show how the D-optimal design may be

determined for an additive k x k ANQOVA.
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Example 3.2.2: Let x = {1,...,k} x {1,...,k}, Tet fo(i,j) =1,

let fr(1,j) = X{r+1}(1) for r=1,...,k-1, and let fr(i,j)=fr_(k_])(j,i)
for r = k,...,2k-2. Here X{rsl} denotes the characteristic function
of the singleton {r+1}. For E = X, the concavity of log|M(&)]| and
the symmetry of the problem imply that the D-optimal design allocates

an equal proportion of the observations to each of the k2

points of X.
Now consider the restriction that E = X - {(k,k)}. That is,
observations may not be obtained when both factors are set at their
highest levels. (Such a constraint might arise if the particular
combination of factor levels would be lethal to subjects in a study.)
In this casé, the problem is invariant with respect to permutations of
the first k-1 levels of either factor and with respect to interchange
of the two factors. Hence the D-optimal design £9 should have these
properties. This implies that dgo(i,k) = dgo(k,j) = ¢ for
1<, §<k-1and that dey(i,3) = [1 - 2(k-1)x1/(k-1)% for
1<i,j <k-1,where 0 <t < 1/2(k-1). Thus the problem is reduced
to that of determining the value of t which maximizes ‘M(EO)I’ which
is just a polynomial in t.
For k = 2,-there are only three available treatment combinations.
It is readily shown that the optimal value of v is 1/3. That 1s,i
an equal proportion of observations is allocated to each available

treatment combination. However, this does not hold true for k > 2.

For k = 3, elementary manipulations yield

IM(gO)l = C rz(%-~ r)(%-— 1)2, where C > 0. This polynomial has one
maxima for 0 < v < © which satisfies 0 = 160¢° - 32¢° - 6¢ + 1.

Apgroximately, © = .1351. Note that t

v

1/8. Thus g9 compensates for
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the missing cell by allocating a slightly larger proportion of

observations to the highest levels of the two factors.

3.3 The (@,y)-Problem

Recall that for the (p,y)-problem, ¢ and ¢ are measures on X with
the properties that ¢(x) < 1 < y(x) and dp < dy. Recall also that
g = {gldp < dg¢ < dy}. The following theorem is an application of
theorem 3.1.1 to the present setting. It follows a theorem of Wynn

('77). See also Wynn ('82).

Theorem 3.3.1: Llet g5 € =, let B = Support (g0~@), and let

B = Support (w-go). Then £q is D-optimal if and only if

min d(x,£,) > max d(x,&,).
5 07 =" 0

Proof: According to remark 1.3.1, there is no loss of generality

in assuming that ¢ = 0. For purposes of notation, let xy = min d(x,go)
B

and Ko = mgx d(x,go).

Assume first that Ky 2 kg Now for any £ € =,

dg
fd(X’go)ng(X)i%d(x’EO)dg(x)i£[d(X’EO)—KZJ[EEQ'(X) g-‘E-(X)]th(X)-(3'-3-1)

x dy
g . g de
For HE—-(X) = 1, the difference EE“'(X) - aE-(x) > 0. Furthermore,(
dgo _
HE“'(X) = 1 implies that x € B and hence that
dg
d(xsgo)"'Kz = [d(X,EO)—K]] + [K]_K'2] _>__ 0 + O = O. FOY‘ d_lpg‘ (X) = 0, the
deg de
same type of reasoning implies that Eﬁ_'(x) - HE'(X) < 0 and that
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dg ,
d(x,Eg)-k, < 0. Finally, 0 < EEQ‘(X) <1 implies that x € BN B so

that d(x,go) = Kk, = kg must hold. Thus the integrand on the right
hand side of (3.3.1) is non-negative so that

max fd(x,gO)dg(x) < f d(x,go)dgo(x). Therefore, theorem 3.1.1
£ X e

implies that &9 is D-optimal.
Assume next that Ky < Ko Then there exist B]<: B and BZ<: B

such that d(x],go) < d(xz,go) for all Xq € B]‘and Xo € BZ' Without

de

loss of generality, E$Q~(x) < 1-e on 82 for some € > 0. Now set

dg] = dgo on B] and 0 elsewhere, set dgz = dy on 82 and O e]sewhere,
and set £ = g4 + v[£,/0(B,) - £,/€4(B;)]. Here

0 <y < minfgy(B,), ep(B,)]. It will first be shown that £ € E. For
any Ac x,

g(A) z EO(A‘B]) + CEO(A i B*]) -y EO(A n B])/EO(B])

> g(A N By) [1-v/£4(By)] > 0.

&
For x ¢ 82, 8%'(X)45'_"_ (x) < 1. Forxe 82,

~ dg ~
dg 0 3 _ _
a*‘ﬂ (X) iar (X) + X’b‘(—gvz—)‘i (] £) + ¢ 1. Thus O < dg < dy. Also,
E(x) = EOCZ). Therefore, £ € 5. Finally, note that

Jd(x,£,)dE(x) > [d(x,E,)dEs(x) + v[0] by definition of B, and B..
2 0 240 %0 1 2

Hence theorem 3.1.1 implies that £o is not D-optimal in this case and

the proof is complete.

Examples will now be given to show how theorem 3.3.1 may be

implemented to obtain a D-optimal design.



Example 3.3.1: Consider the situation of polynomial regression

of degree n onx = [-1,1] where d ¢ = 0 and dy(x) = ydx for some

y > %n This problem is symmetric with respect to Fef]ection about
the origin, so the D-optimal design EO should have the same symmetry.
Then by analogy with the unrestricted solution and in view of theorem

2.3.5(11), €9 should have the form

o vdx o xe€ [-hylu Dypypluewlypngsyanoqdu Dygg 1l
dgo(x) -
0 otherwise,
where Yi = “Yonoi+] for 1 < i < n. This symmetry implies that the

elements of M(go) are

i i+j even

i+
M‘ij(go) = .
0 i+j = odd

and hence that d(x,go) = P (x2; y],...,yn), where

n
2. _ 0 23
Pn(x ’ Y]a--~3y ) - .z ai(y]a---3yn)x

n is a polynomial of degree n
i=0

in x° whose coefficients are functions of Yys---s¥y- Now if g4 is to

N’
be D-optimal, theorem 3.3.1 implies that the variance function must

M2 2 n 2i
have the form d(x,go) =D+C 1 (x -Y; ) = D+C } si(y],.--,yn)x .

i=1 i=0
Equating coefficients of the two forms of the variance function yields
a(yyseeyg) ailyyseaayp)
s (y y) s (y y y for
'l 'l,-o-,n 1' '],O.Q,n

the n-1 equations i=2,...,n.
In addition, the requirement that EoCt) = 1 yields a linear constraint

n
of the form Z biyi = k. Solution of all n equations in Yyo--+9¥y
i=1]
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should yield the D-optimal design &g
For Tinear regression, it is easy to obtain

1

yéx  x € [-1, 5= =11y 1 %—Y— 1]

dgg(x) =

0 otherwise
and to verify that this design satsifies the condition of theorem
3.3.1. Note that as y » =, £y converges to %{6_]+61). This example
may also be compared to one of Wynn ('77).

For quadratic regression, £0 should have the form

ydx  x € [-1,yq1u [y,.-y,du [-yy,1]
dﬁo(X) =
0 otherwise,
where -1 < Y1 < ¥, < 0 and where gOCC) = 1 implies that

y]'yZ =Kk = (]—ZY)/ZY. NOW

1 0 Ho
M(EO) = 0 u2 0 s
wp 0wy

where w, = 2y(1 + y3 - y3)/3 and wy = 2v(1+ 3 - ¥3)/5. Thus

d(x:gg) = Lug + (ug = 3u5)x"/uy + x*V/(uy - )

D+ C(xz-yf)( 2-yg)

Equating'coefficients of x2 and x4 yields

3
4 uz /(y]‘.yZ)—]/(Uq_"Uz)
UO(UA U2)

a3
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Then substituting for Mo and g employing the constraint Yy = Yo T %

and repeatedly simplifying yields that Y3 must solve

0 = 45 yq - 90K2yf £ 528+ 173 - 4+ 2)y§

- 10c Gt a3 - 2+ )y + (38 + 80 - 53 + 52 + 3-2).

Table 3.3.1 summarizes the results of this method for various values

of v.
Table 3.3.1: D-Optimal Design for Quadratic Regression
on [-1,1] under dy(x) = ydx
'_Y_ 3’?_ :;YJ— EO([yZ’—yZJ) go(['] ayl]):'go(['_y'l,]])
.5 .4472 L4472 .4472 .2764
.6 .3724 .5391 . 4469 .2766
.7 .3146 .6004 .4404 .2798
.8 .2707 .6457 .4331 .2835
.9 .2367 .6811 .4260 .2870
1.0 .2098 .7098 .4196 .2902
1.5 .1322 .7988 . 3966 .3017
2.0 .0957 . 8457 . 3828 . 3086
3.0 .0613 . 8946 .3678 .3161
5.0 .0355 .9355 . 3550 . 3225
10 .0172 .9672 . 3440 .3280
100 .0017 .9967 .3348 .3326
o 0 1 1/3 - 1/3

Observe that the limiting cases of y = 1/2 and y » = yield

. 1 ‘
(respectively) Eg =V and £y = 3-(6_] + 8y + 6]) as they sbou]d.

Example 3.3.2: Consider a modification of example 3.2.1 with

x = {(x],xz)[—1’§_x],x2 < 1}, with f(xq5X,) = (1,x],x2)', with
de = 0, and with
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(1 (xpaxp) € (1,10, (1,-1), (1,00,(0,1),(0,-1),(-1,0)}
J 1 Gexp) € L0, (1,10

dy(xy,x,) =
0 (x],xz) € {(x1,x2)]lx]+x2] > 11 - {(1,1), (-1,—1)}

“arbitrary otherwise,

where 0 < y < 1/4. That is, ¢y has atoms of mass 1 at the six corners
from example 3.2.1, atoms of mass y at (1,1) and (-1,-1), no mass
outside the region E from example 3.2.1 except at (1,1) and (-1,-1),
and arbitrary mass distribution within the region E from example
3.2.1. Theorem 3.1.1 will now be used to establish D-optimality.

For %-j_y 5_%3 Tet

Y (X'|3X2) € {(]:])s (']9’])}
dgo(x]sxz) = %"Y (X'ISXZ) € {(13"])a (—131)}
0 otherwise.

Then 1 0 0
M(go) = |0 1 4~-1
0 4y-1 1

and d(x],xz; gO) =1+ (x?—ZKx]x2 + x%)/(]—gz), where k = 4y-1.
NOW g = {(]s])a (-]s"])a (])"]): (']3])} and ? =X - {(151)3 ('1;‘])}-

Thus_m%n d(xy5xy5 Eg) = d(1,-1; £g) = d(-1,15 g5). Also,

mgx d(x],xz; go) = d(1,-1; go) = d(-1,1; go). Thus theorem 3.3.1

implies that g9 is D-optimal. Note that when y = 1/4, then &g

reduces to the known unrestricted result.
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For 0 <y < 1/8, Tlet

,
Y (X]axz) € {(1a])s ("]:‘1)}
1 5
—+——Y (X :X)E{(]3'])s ("]3])}
dgo(x1,x2)=< 6 3 e .
L3y (xpaxy) € €(1,0), (0,1), (-1,0), (0,-1))
{ 0 otherwise.
1 0 0
Then M(g0)= 0 2(1+4y)/3 -(1+4y)/3

o

-(1+4y)/3  2(1+4vy)/3

and d(x ) = 1+2(x$ XXy * xg)/3n, where k = (]+4y)/3.

1°%23 %0
Now B = {(1,1), (-1,-1)} and B =X - B. Also, it is readily shown
that

m%n d(x1,x2; go) = 1+2/k > 1 + 2/3k = m;x d(x],xz; go).

Thus theorem 3.3.1 again implies that £9 is D-optimal. Note that

when y = 0, then £0 reduces to the solution of example 3.2.1.

For an application of these methods to a one-way ANOVA, see

Wynn ('77). The following example illustrates the two-way case.

Example 3.3.3: Consider a modification of example 3.2.2 with

de = 0 and with

y o (i,3) = (k,k)

1 otherwise,

dy(i,j) = {

where 0 < vy 5_1/k2. That is, ¢ limits only the proportion of
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observations that may be allocated to the highest levels of both
factors. This problem has precisely the same invariance as example
3.2.2, so the D-optimal design £g must satisfy dgo(i,k)'= dgo(k,j) =

)2 for 1 < i, j <k -1, where

and ng(i,j) =1 -p - 2(k-1)21/ (k-1
p = dgo(k,k). Here 0 < p <y and 0 <t <p + 2(k-1)r < 1.

Now Tlet éO = [go - pﬁ(k’k)]/(]-p). Then

M) = [(-0IM(gy) + of(ksk)F(k,K)'|

1]

ok k) M1 () F(K,K)
T-p

(1-p>|M(50>1{1 +

IM(E )L + o[Fkk) M (E ) F(kGK) - 113
0 0

1}

M(EQ €1+ old(k,ksEg) - 13

According to example 3.2.2, d(k,k;éo) > max d(i,j;éo) > 2k-1. The
i+j<2k

first inequality must hold since £o is not D-optimal for the
unrestricted problem. The second inequality follows from lemma
3.1.1(i1) with n = 2(k-1). Hence d(k,k;éo) - 1> 2(k-1) > 0. Thus
[M(go)] is maximized for any 50 by choosing p = y. It now remains
only to determine the value of t which maximizes IM(gO)I. |

For k = 2, it is readily shown that t = (1-y)/3. That is, an.
equal proportion of observations is allocated to each of the
"unrestricted" treatment combinations. Thus EO coincides with the
solution of example 3.2.2 for k = 2. That such a coincidence need
not be true in general is apparent by considering the limiting case

y = 1/k2. In this case, must allocate equal mass to all cells

)
but tie design £. from example 3.2.2 does not.
0
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3.4 The p-Problem

Recall that for the p-problem, {Gmlw €q} is a collection of open

sets, P €(0,1) for each w €Q, and & = {g]g(Gw) <P W €q}t. Now

consider the case that @ = {1,...,s}. Then let GO = X - U G and
i=]

Po = 1. The following corollary provides a more easily implemented
version of theorem 3.1.1.

Corollary 3.4.1: Let @

{1,...,8}, let go €z, and let

0,...,s. Also, let A( >el> ACS) be

0) 22!

A, = sup d(x,g,) for each i
i G 0

i
the ordered values of Ass and let r €{0,...,s} be the largest integer

for which Z p( ) < < 1, where each p( ) corresponds to A( )" Then

EG is D-opt1ma1 if and only if
r
2 Pyt t 0 2 Py T

Proof: Under the assumptions made,

r
ng [ d(x,¢& )dg(x) ZO p(i)A(i) + (1 - Z p(1))A(r+1) Thus the

corollary follows immediately from theorem 3.1.1.
Examples will now be given to show how a D-optimal design may be

obtained for the p-problem.

Example 3.4.1: Consider the setting of Tinear regression on

%= [-1,1] with s = 1, with G] = (a],]], and with Py < 1/2. The

D-optimal design turns out to be £y = pyéy + vS, (1 - py - )y
1

where y = %(al +1 - 4p])+. Thus if o 5_4p] - 1, then 50 allocates
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\

observations as equally as possible to the endpoints. Otherwise,
o is "close enough" to 1 to be included in Support(go). In the case
that o 5_4p] - 1, elementary calculations yield

by = igp d(x,go) = d(1,€o) = 1/p; and
1

s%f d(x,go) = d(-1,g5) = 1/(1-py) < 1/py. Then piaq + (1-p])AO=2
2} .
]

1

)

and so corollary 3.4.1 implies that £0 is in fact D-optimal. In the
case that oy 3_4p] - 1, it can be shown that g = d(],go), that
by = d(a],go) < A7s and that pyaq + (1—p])AO = 2. Thus Eq Must be

D-optimal in any case.

Example 3.4.2: Consider the setting of quadratic regression on

xZ=[-1,1] with s = 1, with Gy = (-a,a), and with Py < 1/3. This
problem is symmetric about the origin and so the D-optimal design

£o must also be symmetric. The only way to satisfy the symmetry
requirement, to satisfy theorem 2.4.4, and to have ]M(go)[ > 0 is

that either Support(go) = {-1, 0, 1} or Support(go) = {-1, -a, 0, a, 1}
and 50({0}) = py- It turns out that the latter case yields the |

D-optimal design Eg = P18g * y(G_a + aa)/z + (1 - Pq -y)((S__] + a])/z,

where v = (2 - a2 - a4 - az + 1)/(3 - 3a2). For this design,

8y = d(0,g4) and ay = d(-T,55) = d(-a,£4) = d(a,gy) = d{1,£,) < 4.
Also, Pyay * (1 - pl)AO = 3 so that application of corollary 3.4.1

establishes that 50 is D-optimal.

The following two examples will show how the p-problem may be

related to the (¢,y)-problem.
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Example 3.4.3: Consider a modification of example 3.3.2 with

X = {(x],xz)l -1 < Xys Xy < 1}, with f(x],xz) = (1,x],x2)', with

G, = {(x],xz)] Xp + Xy > 1} Nx, with G, = {(X1’X2)| Xp t Xy < -1y nx,
and with Py =Py =¥ < 1/4. That is, observations may be allocated

at will within the set E of example 3.2.1 but no more than a proportion
y may be allocated to either G] or GZ‘ It will be arqued that the

design g0 of example 3.3.2 is still D-optimal in the present context.

For %-j,y 5_%3 recall from example 3.3.2 that A, = 4, = 1+ 2(1+p)']
+

and that AO = ]

Ppaq * Pody * (1 - Py - p,) = 3 implies that £, is D-optimal according

2(1-K)-] < Ays where ¥ = 4y - 1. Thus

to corollary 3.4.1. For 0 <y 5_%3 recall from example 3.3.2 that

Ay = by = 1 + 2/ and that A, = 1 + 2/3k < Ays where « = (1 + 4y)/3.

0
Thus pyaq + pyb, + (1 - Py - p2)A0 = 3 implies that £y is D-optimal

in this case as well.

Example 3.4.4: Consider a modified version of example 3.3.3 with

G] = {(k,k)} and PP =Y 5_1/k2. In this particular case of a finite
set X, the set = of allowable measures for the p-problem coincides with
that of the (g,y)-problem. Thus the developments of example 3.3.3
apply to the present example in full.

It should be noted that corollary 3.4.1 lends itself to an
jterative procedure for the construction of a D-optimal design when
Q={1,...,s}. Let g(k) denote the design at stage k and

k

atk) sup atx,e®)) = a0 o6 K. Miso, Tet alfd 5.oo afk) and tet

i

P(1) and‘x(ﬁ) correspond to A%?% for 0 < i <s. Finally, let r(k) be
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(k)
the largest integer for which § pg?g < 1 and Tet
i=0 z
w1 S
: = N + (1 - 1) 8 . Then for th t
g iZO p(1) Xg§g iZO p(1) xgﬁi]) en for the nex

stage of the iteration, set E(k+1) = (ll-fr(k))g(k) + r(k)é(k), where

0 g_r(k) < 1. To complete the specfficéfion of the procedure, it

(k)

remains only to prescribe a choice of t at each stage. It is

suggested that r(k) be chosen according tS Federov's ('72) scheme:

use r(k) = ¢ until [M(g(k))l starts to decreasé; theh use r(k) = 1/2

until lM(g(k)[ starts to decrease again; continue réddcing the mixture

proportion by half until a desired stability of ]M(g(k))l is achieved.
In the special case of polynomial regression on an interval, the

admissibility methods of section 2.4 may be used at any stage of such

(k)

a procedure to improve upon & Such an improvement would typically
simplify the support of g(k) and speed the convergence of the procedure.
Detailed investigation of the properties of such a procedure is

beyond the scope of the present study. A good reference may be

Welch ('81, to appear).

3.5 The Marginal Restriction Problem

Recall that for the marginal restriction problem x = Zy X Xy, @

measure g? on x] is prescribed, and

2 = {g|e(Axx,) = g¥(A) for all Borel sets A< x;}. The following

result of Cook and Thibodeau ('80) is an easy consequence of the more

general theorem 3.1.1.
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Corollary 3.5.1: For the marginal restriction problem, gO is

D-optimal if and only if
[ max d(x1,x2;g0)dg?(x]) = min | Eéx d(x],xz;g)dgT(x]) =n+1.

,'C - ]
x EE€E %
1 2 1 ¢

Proof: For the marginal restriction problem,

max [ [ d(xq,X,3E)dE(xX,%,) = [ max d(x,.x,3£)dg*(x,). Thus the
ez 1°%2 1°%2 = 1:%38 /0T

corollary follows immediately from theorem 3.1.1.

The following consequence of corollary 3.5.1 may add insight to

its criterion for D-optimality.

Corollary 3.5.2: £0 is D-optimal if and only if

Eax d(x],xz;go) = d(x],xz;go)dgo(lex]) for all Xy ESupport(g?).
2 x
2
Here dgo(-]xl) denotes the conditional measure of Eg ON Zz given each

Xy €Support(g?).
Proof: This result has been proven by Cook and Thibodeau ('80).

Two additional results of Cook and Thibodeau will now be sum-
marized by the following lemma. They concern a product and an

additive model.

Lemma 3.5.1: Let 9 and 9, be vector-valued functions defined on

%, and X,. Also, let ¢, be a D-optimal design for g, on X%, and EZ

be D-optimal for (1,92')' on.xz.
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i. If f(x];xz) = g](x])(:}gz(xz), the Kronecker product, then the
product measure dgo(x],xz) = dgz(xz)dgT(x]) is a marginally restricted
D-optimal design.

i, If fxqsx,) = (1597(x¢) "5 9,(x,)"')", then

dgo(x],xz) = dgz(xz)dgT(x]) is D-optimal.

Proof: See Cook and Thibodeau ('80).

Example 3.5.1: Consider again the situation of example 3.2.2 with

a marginal restriction imposed. This problem fits exactly into the
mold of lemma 3.5.1(ii) with gy = (f],...,fk_])' and

9o = (fk,...,f2k_2)'. Thus the D-optimal design is

dgo(x],xz) = déz(xz)dg¥(x]), where 52 is D-optimal for (1,g5)" on
%2. To complete the solution, it is only necessary to note that the
balanced one-way design 52 = (8; +...48 k)/k is D-optimal for (1,g,)"

on Zz.

The following example, with one minor correction, is due to Cook

and Thibodeau {'80).

Example 3.5.2: Let 2= [-1,1] x [-1,1] and f(x],x2)= (]’XZ’X]XZ)"

_ l - % A

Also, let £y = 2(6_} + 6]) and dgo(x],xz) dgz(xz)dg](x1). Then it is
. L 2, .2 2, 2
readily demonstrated that d(xl,xz,go) =1+ X5 + x2(x]—u1) /(p2 ul),
where p, = [ x,dg*(x;) and u, = [ xzdg*(x Y. Thus
1 172171 2 17171
23 %)
1
: _ 2 2 )
Qj; g]:azx d(x'l 3x23€0)dg7(x]) - {][2 + (X]_“]) /(UZ-H])]dE‘?(_X1)— 3 so that
1

corollary 3.5.1 implies that £o is D-optimal for this problem.
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For a detailed discussion of procedures to construct marginally

restricted D-optimal designs, see Cook and Thibodeau ('80).
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CHAPTER IV
c-OPTIMALITY

4.1 General Results

Now that D-optimality has been treated, the criterion of
"c-optimality" will be considered. The setting for c-optimality is
that a particular linear combination c'e is to be estimated by c'8.
Thus it is natural to attempt to minimize the variance of ¢'6. If
[M(g)| > 0, this variance is proportional to A{c,t) = c'M—](g)c. For
IM(£)] = 0, the inverse operation should be replaced by a generalized
inverse. In any case, c should be estimable with respect to M(g). The
following definition, which is developed in Karlin and Studden ('66b),

incorporates these versions of the criterion.

Definition 4.1.1: Let V = {v|M(g)v = 0} and Tet V* be its

orthogonal complement. The variance function of the design ¢ is

A(c,g) =max v'cc'v/v'M(g)v
vevt
v#0
if ¢ is estimable with respect to £ and = otherwise.
The following lemma provides a more convenient form of this
variance function for present purposes.
Lemma 4.1.1: The variance function is aA(c,&) = 1/ min v'M(g)v
v'ic=1
if ¢ is estimable with respect to £ and = otherwise.
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Proof: Recall first that ¢ is estimable if and only if c €V*.

Hence max v'cc'v/v'M(g)v 3'(c'c)2/c'M(g)c > 0. Thus the maximization

vev+
v#0
may be carried out for v'c # 0 so that a(c,g) = max 1/v'M(g)v when
veyt
v'c=1

c is estimable. For arbitrary v, let v denote its projection onto v,
Then v'c = vic for ¢ €V+ and v'M(g)v = v, (£)v, by defnition of V.

Thus A(c,g) = max 1/v'M(g)v = 1/ min v'M(g)v for c estimable so
v'c=1 v'c=1

that the lemma is proved.

The following definition makes explicit the design criterion of

c-optimality.

Definition 4.1.2: A design £0 €= is c-optimal if and only if

A(c,ao) = min A(c,g) = 1/max min v'M(g)v.
ECE g€z v'c=1

Of course for non-triviality it must be assumed that there exists
at least one design &£ €% such that A(c,g) < .

The question of c-optimality has been addressed by many authors
in the unrestricted design setting where © = Eg» the set of all
probability measures on X. El1fving ('52) has provided a very appealing
geometric characterization of c-optimality. An equivalent approximation
theory problem has been derived by Kiefer and Wolfowitz ('59). They
then obtain the optimal design for estimating the highest coefficient
of a polynomial regression function. The problem of polynomial
extrapolation has been solved by Hoel and Levine ('64). Studden ('68)
has obtained the optimal design for estimating any one of the coef-

ficients of a polynomial regression function.
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The main intent of the present section is to adapt the approximation
theory equivalence to the problem of determining a c-optimal restricted
design. The later sections will provide examples of c-optimal designs
under various restrictions. These examples should serve to indicate how
c-optimality can depend on the particular form of restriction.

The following theorem provides a characterization of c-optimality.
It is essentially an adaptation of a result of Kiefer and Wolfowitz |

('59) to the restricted design setting.

Theorem 4.1.1: js c-optimal if and only if there exists v such

)
that v'c=1 and

max f[V'f(x)]ng(x) = f[i'f(x)]zdgo(x) = min f[v‘f(x)]zdgo(x).'(4.1.1)
EEE X x vics1l «
Proof: Recall from definition 4.1.2 that g €E is c-optimal if

and only if min v'M(gO)v = max min v'M(gO)v. The theorem will
v'ic=1 g€z v'c=1

now be proven by formulating it as a game theory problem. To do so,
Tet K(z,v) = v'M(g)v be the payoff function of the game. Then K(&,v)
is continuous in both arguments, linear in £, and convex in v. Also,
= is convex and (weakly) compact and {v|v'c = 1} is convex. Thus,
according to Karlin ('59), the game is determined and there exist.

€= and V such that v'c=1 and such that

)
max K(g,v) = K(gO,Q) = min K(go,v) = max min K(g,v). To complete
EEE v'c=1 ges v'c=1 ’

the proof of the theorem, it is only necessary to observe that
m@w=vm@w=£uwun%am.
Note that in the unrestricted case that = = g the theorem yields

the Kiefer and Wolfowitz ('59) result that
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min max [v‘f(x)]2 = I[V'f(x)]zdgo(x) = m1n fIv'f(x)] dg (x).
vic=l X X vic=l X

In order to accent the approximation theory flavor of this theorem,
let the linear space C(X) of continuous real-valued functions on X be

endowed with the norm whose square is ||g{|2 = max | gzdg. To verify
€x

that ||-]| is in fact a norm, note first that it may be assumed without

loss of generality thatx = U Support(g). Then ||g|]2 = 0 if and
EEE

only if g(x) = 0 on X. Also, |[yg||2 = yzllgll2 is immediate. Thus
it remains only to verify the triangle inequality. For arbitrary

9y> 9,€ c(x),

1

2 2
max f[g] + 29]92 + gzjdg

2
[19q + 951
EEE

IA

max fg]dg + max fgzda + 2max [g9,dE
EEE X Ee€E X EE€Z X

2
layl1Z + 11g,l 17 + 2max fgqg,de.
ECE X

By the Cauchy-Schwartz inequality,

2
max [fg]gzdg]
g€z X

I A

max [fg%dg fggdé]
EE=

< max f91d£ max fgzdg

gEEZ £€EE X
2
SEIPRILIPATE
Thus max fg g,dg < max lfg g.de| < |lgq]1 |lg,]| so that
£es 1°2 £€~ JC] 2 1 2
2 s 3
gy + 9,012 < 11gy11% + 1ayl12 + 2l1gy 11 1lg,l|5 verifying the triangle

inequality. It may now be noted that, in terms of this norm [|-]], the
quantity in (4.1.1) is

min max [[v'F(x)1%e(x) = min [[v'F][2 = [[9 ]2
vic=l g€z X v'c=1 ,
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It turns out that there is a dual version of this approximation
theory problem which leads to an analogue of Elfving's ('52) theorem.
For purposes of notation, let the vector F(f) = [F(fo), F(f]),...,F(fn)]'

for any bounded linear functional F on C(X). The dual problem is to

determine B™1 = min  ||F||, where the standard notation
F(f)=c
||F|| = max |F(g)|/]|]g]] is used for the norm of the functional F.
gec(x) :
It is proved in Krein and Nudelman ('77) that B = min [lv'fl].
v'c=1

Furthermore, if R = {F(f)| ||F|] < 1}, then Bc = Eo(f) € 3R, Qhere Fy
is some linear functional of norm 1.

Now according to the Riesz representation theorem, any bounded
Jinear functional on C(%) admits an integral representation of the form
F(g) = [g(x)do(x), where o is a finite signed measure on X. In the
unrestr?;ted case that & = g, [IF|] = 1 implies that the signed
measure do(x) = s(x)de(x), where |s(x)| and & 650. Thus

Bc = ff(x)s(x)dgo(x) 3R (4.1.2)
Z A
for some £, €E;. Hence B = BV'c = fV'f(x)s(x)dao(s) so that

2

B < [V'f(X)]ZdEO(X) j_ll@'f[lz = B°. That is, is c-optimal so

RN—

&0
4.1.2) is merely Elfving's ('52) theorem for 2 = g Furthermore,
in this unrestricted case, R is the convex hull of {+f(x)|x €x}. It

that

—~

will be shown by example 4.3.1 in section 4.3 that (4.1.2) need not hold

for general =.

4.2 The E-Problem

As already remarked, the E-problem may be considered as an

unrestricted design setting with X' = E. Thus the following corollary
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summarizes the comments of the previous section for = = EO'

Corollary 4.2.1: 1. Ep€E is c-optimal if and only if

min max [v'f(x)]2 = | [V'f(x)]zdgo(x) = min | [v'f(x)]ZdEO(x).
vie=1 E E vic=1l E

ii. Let R denote the convex hull of {+f(x)|xe E}. Then EgE E 15
c-optimal if and only if there exist B > 0 and |s{x)| = 1 such that
/ f(x)s(x)dgo(x) = Bcé€ 3R.

E

Proof: This corollary merely summarizes results of Kiefer and
Wolfowitz ('59) and Elfving ('52).

It should be noted that, according to Caratheodory's theorem, any
point on the boundary of R may be represented as a convex combination
of n + 1 or fewer extreme points of R. Thus Support(go) need include
at most n + 1 points of E. It will be seen that for some special cases
of the E-problem, the c-optimal design may have more than n + 1 support
points.

Examples will now be given to show how the E-problem restriction
can affect known c-optimality results.

Known c-optimality results for unrestricted polynomial regression
on [-1,1] will first be recalled. For extrapolation to X, where .
|x| > 1, the appropriate ¢ = f(x). For estimation of 8> the highest
regression coefficient, ¢ = (0,...,0,1)'. For the two types of ¢, it
has been shown by Hoel and Levine ('64) and Kiefer and Wolfowitz ('59)
that Support(go) = {xo,...,xn}, where the x, = cos[(1-i/n)n] are the

Tchebycheff points of order n. For ¢ = f(x), the corresponding design



n
weights o, are proportional to ILi(i)! =|.H0 (i—xj)/(xi—xj)[. For
J:
J#i
2

For ¢ = (0,...,0,1)', the weights p; are proportional to 2 - X{]}(xi)'

Recall also the trivial result that for ¢ = f(X) and [x| < 1, the

c-optimal design is g = 62.

. Example 4.2.1: Consider now the problem of quadratic regression

~on Ec [-1,1] for the purpose of extrapolation to x, where |x| > 1.
Thus f(x) = (1,x,x2)', without Toss of generality (-1,1} < E, and
c = f(x). Let « = max([-1,0] NE) and 8 = min([0,1]1 N E). In the
case that « = B =.O, the c-optimal design coincides with the

unrestricted solution that 50 = pOG_] + p160 + p26], where the design

2 @

weights o, are proportional to ]Li(i)! =|.HO(§'XJ)/(X1'X3)I-
J:
j#i

It remains to determine the c-optimal design £0 when a < 0 < B.
It is claimed that Support(gg) = {-1,a,1} if la| < |8] and
Support(go) = {-1,8,1} if |a| > |B]. Without loss of generality,

only the case |a| < |g| need be considered. It will first be argued
that min max |v'f(x)| = max |v'f(x)|, where v = (- %(]+a2)
vie=1 E E

Thus V'f(x) = %2 - (1+a2)/2 so that v'f(-1)=v'f(1) = - v'f(a) = (l—az)

Y 0) ])..

and |v'f(x)| < (1-a%)/2 for x€E - {-1,a,1}. There can be no better
approximation i‘f(x) or else the quadratic (5—9)'f(x) has one root

in (-1,a), one root in (a,1), and one root at x which is impossible.
Thus corollary 4.2.1(i) implies that Support(go) = {-1,a,1}. That is,

the offect of the design restriction is to replace the support point

117
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0 by the point «. The design weights p; are proportional to the
[Li(x)] corresponding to -1,a,1.

As pointed out by Kiefer and Wolfowitz ('65), the c-optimal design
for ¢ = (0,...,0,1) is the limit of the extrapolation designs as
[X] > =. Thus Support(gy) = {-1,a,1} for [af < [B]. The design weights
obtained by solving the linear system of corollary 4.2.1(ii) are
pg = (1-a)/4; o

For |a| > |B|, these solutions are merely reflected about the

1/2, and Py = (T+a)/4.

origin. For |a| = |B|, any convex combination of the solutions for
la| < |B| and for |a| > |B] is c-optimal.

For cubic regression on E < [-1,1], the supports of the c-optimal
designs for the highest coefficient and extrapolation problems will
once again be the same. The following lemma will detail this support

under the several relevant cases. The corresponding mass distributions

are readily obtained by solving the linear system of corollary 4.2.1(i1).

Lemma 4.2.1: Let oy = max{([-1,- %] N E), let By = min([- %31] neE),

let @, = max([-1,5] N E), and Tet 8, = min([3,1] N E). Also, Tet
w(y) = 2 +y - V2(T+y), let r(y) = 2u(y) - y - 2, and let
t(y,2) = [lay-ay)(1-2)z - 2(1+y)1/[2(14y) + (1-2) (ap-0q)].
i. If ap = By T - %—and ay = By = %3 then the unrestricted solution
%3 »1} is still c-optimal for the highest

rof —

that Support(go) = {-1, -
coefficient and extrapolation problems for cubic regression.
.. 1

ii. If Ay < - 5 < By f_r(a1) and w(s])é E, then

Support(go) = {—1,B],w(81),1}.



i1, If a; < -3 <rla) < 8 < wlog) and w(a;)€ E, then
Support(go) = {—],a],w(a]),]}.

iv. If o < - %-i_w(a]) < Bqs then Support(go) = {-T,0y,845 17
v. If Bo 3_%—3_a2 3_~r(—82) and —w(—a2)€ E, then

Support(gy) = {-1, ~w(-0,), aps1}.
vi. If 8, 3.%-3_—r(32) > a, > -w(-8,) and -w(—BZ)E E, then

yii. If 8, 3_%~3_—w(—82) > oy then Support(go) = {—1,a2,82,1}.

—

viii. If ayp -5 < t(a] ,a2) < B] and ay <7< —t(-az,—a]) < 82,
then Support(go) = {-T,a],az,]}.

. 1 1

ix. Ifoy<-35< t(ays8,) < 8 and o, 5_-t(—62,-a]) < 5 < Bys then
Support(go) = {‘]9a138231}-

x. If a < tBysa,) < - %-5_81 and a, 5_%-5_—t(—u2,—81) < B,» then

Support(go) = {—1,B],u2,1}.

ol

. 1
xi. If o 5_t(31,82) < - %<8y and a, 5.—t(-32,-81) < 7 < By then

Support(go) = {'],815829]}-

Proof: The proof will be sketched for cases iii. and viii. The

others may be similarly verified.

iii. For this part, consider the possibility that oy 5'—-%‘3 By

and that Support(go) = {—1,a],w,1} for some w 6(81,1) N Interior(E).
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Since the supports of the c-optimal designs for the highest coefficient

and extrapolation problems are the same, only the highest coefficient

problem need be considered. Thus it is necessary to consider the

cubic function g(x) = 3 4 szz + Q]X + 90 such that
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2

max |[g(x)] = min maxlx3 VX" F ovyx + VO! = B. If
E

VgeVyaVo E
SUpport(gO) = {—1,a],w,1} is to hold, then |g(x)| must achieve its
max at these support points and be smaller for all other x€ E. Thus
g(x) = -B + (x+])(x-w)2. Manipulating the further requirements that
g(a]) =g(1) = B yields w = 2 + oy - /?1715;7'= w(a}).' It now remains
only to determine the conditions under which g(B]) < B. Manipulatidn
of this inequality yields B > 2+ oy - Zw(a]) = r(a]). Of course
B, g_w(a]) if w(a])e E is to hold.

This completes the proof of part iii. and indicates the validity
of parts ii. and 1v.

Parts v.-vii. may be obtained by reflecting the results of
parts 1i.-iv. about the origin, replacing 0 q by 85> and replacing
81 by -ay-

viii. If Support(go) = {-T,ay5a,,1} is to hold, :then

g(x)= B + (x-ay)(x-t;)(x-1)
=-B + (x+1)(x-a,) (x-t,),
‘where o 5_t] < By and oy §_t2 < By Manipulation of‘these requirements
yields By > ty = t(aj,az) and 8, > t, = —t(—az,—a]).

Parts ix.-xi. are proven similarly. Thus the Temma is proved.

The remainder of this section will be devoted to the consideration
of a problem posed by Hoel ('65). The setting for this problem is that
of polynomial regression (f(x) = (1,x,...,xn)') on E < [a,b], where
n>2and a, b€ E.' The goal is to extrapolate to an interior point

x€ [a,b] -~ E; thus £y should be c-optimal with respect to ¢ = f(x).
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Now let o = max([a,x) n E) and 8 = min{{(x,b] n E). (Hoel assumes

that £ = [-1,1] - (a,8) but the problem is easily generalized.) The
following developments correct an error of Hoel which can Tead to the
selection of a sub-optimal design; they should also serve to streamline

the method of proof.

Lemma 4.2.2: There exists a unique polynomial G(x) = v'f(x)
such that: |
i. ]G(x)] <1 onE,
ii. [G(xi)l = 1 for points Xg Seee< X from E,
i, x.=a and Xppp = B for some re {0y...,n-1},

iv. eijther Xg = a or xn = b, and

(-1 i

v. sgn[6(x;)] = { i-(r+1)

(-1) i>r+1.

IA

r

Proof: The proof of this lemma will be incorporated into the

proof of theorem 4.2.1.

Theorem 4.2.1: Let the points Xg <eee< Xg be as in lemma 4.2.2

and the design weights 04 be proportional to

no ‘ ) .
L (x)] = !jEO (x—xj)/(xi—xj)l. Then the design £, = posxo toobp 8
j#

is c-optimal with respect to ¢ = f(x). Furthermore,

n

plesgg) = difogg) = 6°(X).

Proof: The fact that the p; are proportional to the ILi(i)[ will
be immediate once the support of &0 is confirmed. The proof of the

theorem will now be set forward in several steps.
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i. Let g(x) = v'f(x) be the polynomial of corollary 4.2.1(i) such

that v'f(x) = 1 and B = max |g(x)] = max |[V'f(x)] = min max |v'f(x)].
E E v'c=1

Then the c-optimal design g, must satisfy Support(go)cz {x] lg(x)| = B}.
Thus, if Xg S--e< X are the support points of go, corollary 4.2.1(i1)
implies that
k
Bf(x) = Z e.p-T(x:), (4.2.1)
jeg T

where each e; = sgn[g(xi)] and each o = 50({x1}). Equation (4.2.1)
implies that f(x), f(xo),...,f(xk) are linearly dependent and hence
that k > n. Also, as already remarked, a c-optimal design exists
with k < n. Thus k = n may be assumed. Further comment on the
possibility that k > n will follow the proof.
ii. It will now be shown that g(xi) alternates in sign as X; moves
away from x. Let Xg Seer$ X 20 < B < Xy el X (The next
step of the proof will establish 0 < r < n - 1.) Now (4.2.1) implies

that

I

san [lf(xo)" L ,f(xi__])’f(i)ﬁf(x-i_*_] ) 3o Sf(xn) I]

€. = Sgn[eipi/B]
[f(xo), . . . ,f(xn)[

1

(-1)"1 i<r
3(_])i-(r+]) isor ot
according to Cramer's rule and the alternating property of the
determinant which follows from definition 2.1.2.

iii. The next step of thé proof is to establish that x;j < and
X, 2B (so that 0 < r < n - 1). Suppose first that X, < a. Then

sgnlg(x;)] = (-1)"?' so that g'(x) has at least n - 1 roots in (a.x,).
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Now note that the value of C > 0 may be chosen small enough so that

the polynomial go(x) =1 - C(x-;()2 has max !go(x)[ < 1. Hence B < 1.
E

Then the inequalities gfa) < B, g{X) = 1 > B, and g(g) < B imply that

g'(x) has at least one root in («,8). Thus g'(x) is a non-trivial

polynomial of degree n - 1 with at least (n-1) + 1 n roots. This

contradiction implies that x > B. Similarly Xy < a.

n
iv. According to part iii., there exists re {0,...,n-1} such that

Xp <o and x4 > 8. It will now be shown that X, = a and x

r =B

r+1]
must hold. Suppose that X, < a. Then g'(x) must have at least r roots
in (a,xr) and at least n - r - 2 roots in (g,b). Furthermore, B < 1
implies that g'(x) has at least 2 roots in (xr,i). Thus g*(x) has at
least n roots which is impossible. Therefore, X, = o and, similar]y,b

= g.

v. In a similar fashion, either Xg = aorx, = b muét hold. Otherwise,
g'(x) has at least n - 1 roots in (a,a) U (B,b) and at Teast one root

in (a,B).

vi. At this point, it has been established fhat G(x) = g(x)/B must
satisfy the requirements of lemma 4.2.2. To show that the corresponding

requirements on the support of Eg are sufficient, suppose that there

exists another polynomial g(x) such that g(X) = 1 and max lg(x)] < B.
E

- Then let D(x) = g(x) - g(x). Note that D(X) = 0 and that the "sign" of
D(xi) is €5 (under the convention that the "sign" of 0 may be declared
+1). This implies that D(x) must have at least n + 1 roots so that
D(x) = 0 on [a,b]. That is, g(x) is the unique solution to the dual

approximation problem.
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vii. The previous part of the proof establishes that the polynomial
G(xj of lemma 4.2.2 does exist and that the conclusion of the theorem
is necessary. To show that G(x) is unique, suppose that there exists
another polynomial G(x) which satisfies the requirements of the lemma.
Then G(x) - é(x) must have at least n + 1 roots. This contradiction
implies that G(x) is unique and the conclusion of the theorem is
sufficient.
viii. Note finally that 6°(x) = 1/8° = d(X,g,). Thus the proof of
the theorem and lemma is complete. v

Several comments regarding this theorem are now in order. The
error of Hoel ('65) is the conclusion that Xg = @ and X, = b. That
this combined requirement can lead to selection of a sub-optimal
design will be shown in examples 4.2.2 and 4.2.3. The former will
show that the consequences of requiring both Xg = @ and X, = b can be
severe.

It should be noted that the proof of theorem 4.2.1 required only
(x) =1, f

the assumption that f ..,fn comprise a Tchebycheff

0 1°°
system and that fl""’fﬁ comprise a Tchebycheff system.

Note that the support of £0 does not depend on the point x€ (a,8)
of extrapolation. Of course the mass distribution of EO does depend‘
on x. Also, the solution of theorem 4.2.1 is implicit; it requires
the construction of the polynomial G(x).

It may occur that |G(x)| = 1 for more than n + 1 points. In this

case there will be a finite number of sequences x, <...< X0 satisfying

0
lemma 4.2.2. Corresponding to each is a c-optimal design. Furthermore,

any convex combination of these designs will be c-optimal. Such a

situation will be illustrated by example 4.2.4.



Finally, the case that n = 1 has not been covered by theorem 4.2.1

and deserves a note. For linear regression, a trivial application of

Elfving's theorem yields g = poéa+-p]5b, where

pg=1-07 " (b-x)/(b-a).

Example 4.2.2: Consider the setting of cubic regression on

E=1[-1,0]u [.9,1] for the purpose of extrapolation to x = .6.
Application of Hoel's result gives

E ~ .016 , + .058, + .578 4 + .376, and variance d(.6,¢) = 15.35.

1 0 9 1
In order to determine the optimal design, the polynomial G(x) of
lemma 4.2.2 must be determined. In this case, it turns out that
G(x) ~ 1-5.54(x+1)x(x-.9). Furthermore,
+ .318¢

~ . 108 _ + .428, + 178 , and d(.6,g0);u 6.75. In

%0 1 -.58 0 .9
this example, it is seen that requiring a, b, a, and g€ Support(g)

causes a severe inflation of the variance.

Example 4.2.3: The following example is treated by Hoel ('65).

It turns out that the design proposed in the example is almost
optimal. Let n =5, let £ = [-1,0]Jy [.5,1], and let x = .25.

If both points #1 are required to be in the support of g, then the
best design has Support(Z) = {-1, -.44, 0, .5, .82, 1} and
d(.25,£) ~ 3.631. It turns out that the optimal design has
Support(go) ={ -.93, -.44, 0, .5, .82, 1} and d(.25,go):s 3.627.

So in this example, £ only inflates the variance very slightly.

Example 4.2.4: Consider the setting of quadratic regression on

E=[-1,0] y [-a>1] for the purpose of extrapolation to x = 0. For
this example, it is readily deduced that G(x) = (1+a2-2x2)/(1—a2).

125
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Hence G(-1) = -G{a) = -G(-a) = G(1) = -1. Thus it is possible to

choose Support(gé])) = {-1, o, -a} or Support(Eéz)) = {a, -a, 1}.

Furthermore,
Eé]) = [2a25_] + (]—a)sa + (1+a)6_a]/2(1+32) and

0

it

[(1+a)s_ + (1-a)s_ + 2a%6,1/2(1+a%). Thus

Eg = [20L2(1-y)<s_1 + (_]-—d+2ay)6a + (]+a—2ay)6_a + 2a2ys]]/2(1+a2)

is the general form of the c-optimal design for any ye€ [0,1].

4.3 The (p,y)-Problem

Recall that ¢ and y are finite measures on X such that
0 <g(x) <1 <y(x), that dp < dy, and that = = {g]de < dg < dy].
For this type of design restriction, examples of the application of
theorem 4.1.1 will now be given. In order to apply the theorem, the

following lemma will be of use.

Lemma 4.3.1: Let £p€ s let B = Support(go-@), and let

B = Support(y-g;). Then 2f:[Tl'f(X)]zdao(X) = ngea\i( 2f:[fl'f(X)JZdE(X) if

and only if min |v'f(x)]| > max |v'f(x)].
R B
B -

Proof: The proof proceeds exactly as that of theorem 3.3.1 exéept
that [Q'f(x)]2 now plays the role of d(x,go).

In the setting of linear regression onx = [-1,1], it is readily
seen that the D-optimal design will also be c-optimal for estimating
6g(c = (1,0)") or 8;(c = (0,1)'). For dep =0 and dy(x) = ydx, the
design is specified in section 3.3. The following example of quadratic

regression yields more interesting results.



127

Example 4.3.1: Lletx = [-1,1], Tet f(x) =(],x,x2)', let dop =0, and

let dy(x) = ydx for vy > 1/2. For estimating any one of the regression
coefficients, the problem is symmetrical with respect to reflection
about the origin. Hence it is sufficient to consider only symmetrical
designs. Thus the variance of é] is proportional to M{; = 1‘/112 and

so the D-optimal design for linear regression (section 3.3) is optimal
for estimation of 81-

Consider now the problem of estimating 6o in the same setting. By
analogy with the unrestricted optimal design (a point mass at 0), it
is tempting to guess that d&(x) = { ydx  -1/2y < x < 1/2y

0 otherwise
is c-optimal with respect to ¢ = (1, 0, 0)'. However, it may be
confirmed that this design does not satisfy the condition of theorem

4.1.1. Suppose instead that the c-optimal design has the form
dgo(x) = {0 w< |x] <y
ydx otherwise.

Here y - w =1 - 1/2y = « must hold in order that go([-],lj) = 1. Now

note that because of the symmetry of this problem,

1 :
min f[v'f(x)]zdgo(x) = min {(1+v2x2)2d50(x) = min [1+2V2u§0)+V§u§0)]=

vie=lx Vo Vo

where each u(O) =

: x1dg0(x). This expression is minimized by

—t ) ——d

Ty = 1897000 Note also that the only way that lemma 4.3.1 can hold

Vo T mHp /g
is that (]+§2w2)2 = (1+V2y2)2. This implies that 92 = -2/(w2+y2).

Thus the condition of theorem 4.1.1 will be satisfied and EO will be



c-optimal if

Wty

)

0
_ “é ) 5(1+w3—y3).

@ 30y
Ha

Applying the condition that y = w + « to this equation yields the

requirement that

5(24¢3) (Worew) + (k+5¢2-6) = 0.

(4.3.1)

Thus if w is a solution to (4.3.1), then g0 is c-optimal for

estimating eo.

It is readily confirmed that (4.3.1) has one real

root in [0,1/2y]. Table 4.3.1 displays the properties of €9 for

various values of y.

<2

O Woo~NOYUT

U1 W N~
OO oOoOw;m

Observe that the limiting cases of y =

Table 4.3.1:

W y
7746 L7746
.6859  .8525
.6141 .8998
.5545  .9295
.5043  .9488
.4618  .9618
.3214  .9881
2249 .9949
.1651 .9985
.0997  .9997

0 1

eO—Optimal Design for Quadratic

Regression on [-1,1] under dy(x)=ydx

,EO([-W’W]) go([“]a"Y) = go([y,]])
.7746 1127
.8230 .0885
.8598 .0701
.8872 .0564
.9078 .0461
.9236 .0382
.9642 .0179
.9796 .0102
.9910 .0045
.9970 .0015

1 0

2

and y ~ « yield

(respectively) Eg = ¥ and £y = 8 as they should.

It might be noted that this example shows that corollary 4.2.1(11)

need not hold for general design restrictions. For y

and so w

v3/5 results from (4.3.1).

If

=-%, « = 0 holds

128
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s(x) = sgn[V'f(x)] ={+T x| <w
-1 x| >y

]
then [ xzs(x)dgo(x) = (w+y>-1)/3 = (263-1)/3 # 0. Thus orthogonality
5

to fz(x) = X2 does not hold.
Consider now the problem of estimating 0, in the same setting. The

unrestricted optimal design for ¢ = (0, 0, 1)' is

dg(x) = %6_] + %60 + %6]. This suggests that the restricted optimal

design may have the form dgo(x) =40 w< x| <y
ydx otherwise.

Here y - w =1 - 1/2y = « so that 50([~],1]) = 1. Due to the

symmetry of the problem,

1
min f[v'f(x)]zdgo(x) =min | (x2+v0)2dg0(x) = min [u£0)+2VOu£O)+V§]s

vie=l Z Vg - vO
which is minimized by CO = - uéo). Note also that the condition of
lemma 4.3.1 will be fulfilled only if (w2+90)2 - (y2+vo)2. Thus

-VO = -(w2+y2)/2. Hence theorem 4.1.1 implies that £0 will be

v 2, 2
c-optimal if E~%X—~= -QO = uéo) = %}(1+w3-y3). Applying the

condition y = w + « to this expression yields the requirement

6W> + Bcw - (k-3c2+2) = 0. (4.3.2)
Thus £0 is c-optimal if w solves (4.3.2). Table 4.3.2 displays the

properties of 50 for various values of y.



Table 4.3.2:

Y W y
.5 .5774 .5774
.6 .4886 .6553
7 .4200 . 7057
.8 .3665 .7415
.9 .3242 . 7686
1.0 .2901 .7901
1.5 . 1878 .8545
2.0 .1379 .8879
3.0 .0895 .9228
5.0 .0523 .9523
10 .0256 .9756
100 .0025 .9975

© 0 1

Observe that the Tlimiting cases of y =

(respectively) £y = v and £y = (6_] + 25

4.4 The p-Problem

62—Optima1 Design for Quadratic

Regression on [-1,1] under dy(x)=ydx

eo(lwwd)  50([-1,-y1) = g,([y,1])
.5774 L2113
.5864 .2068
. 5880 .2060
. 5864 .2068
.5834 .2083
.5802 .2099
.5634 .2183
.5516 L2242
.5368 .2316
.5230 .2385
.5120 . 2440
.5012 L2494

1/2 1/4

1

§-and Yy > » yield

+ 6])/4 as they should.

Recall that for the p-problem, {Gwlwe Q} is a collection of

disjoint sets which are open in % and each P € (0,1). Also,

Z = {IE(Gm) <P, weal. The following corollary of theorem 4.1.1

is appropriate to the present restriction in the case that

€ ={1,...,s}. It employs the notation that GO =X - U

Po = 1.

S
Gi and
i=1

Corollary 4.4.1: Let £, and v be as in theorem 4.4.1. Let

1
1

denote their ordered values and let each p(i) and G(i) correspond to

m. = sup lV'f(xi)] for i
G.

the ordered value m(i).

0,...,s. Also, let Mgy 2 M1y Zoeez Mgy

Finally, let r€ {0,...,s} be the largest

130
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r
integer such that ) P(iy < 1. Then
i=0
S ()12 g 2 Loy 2
! = . . + - : .

QSQ'%[V (x)17de(x) 1zop(1)m(1) [ iZOp(1)]m(r+1)
r+1 .

. Furthermore, Support(go)c: u {x] v f(x)| = m(.)}.
i=0 !

Proof: The first conclusion is merely an application of the notation .
established by the corollary. The second conclusion is an immediate

consequence of theorem 4.1.1.

One consequence of this theorem is that if ms < Mys then EO(Gi) = 0.
Also, if v'f(x) does not attain ms on Gi’ then gO(Gi) = 0. Examples

of the application of theorem 4.1.1 will now be given.

Example 4.4.1: Consider the setting of quadratic regression on

[-1,1]. Also, let Gy = (ay,-a) and 0 < py < 1. For estimation of 6.,
the unrestricted optimal design g = %(6_] + 6])6 % and hence is
c-optimal under the design restriction.

Consider now the nproblem of estimating 69 in the same setting. By
analogy with the unrestricted optimal design, it is tempting to guess
that £ = PSg * (1—p])(6a + 5_a)/2 is c-optimal for ¢ = (1, O, 05'.
However, it may be confirmed that this design does not satisfy the
condition of theorem 4.1.1. Suppose instead that the c-optimal design
) + (1-y) {8y + 6_)V/2.

As in example 4.3.1, v = (1, 0, 02)' where Gé = -uéo)/ggo). Also,

has the form £ = p]SO + (1-D1)[Y(5a + 4

-0
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1 1
the only way that max f(1+v2x2)2d£(x) = f(1+v2x2)2dgo(x) can hold
I -1
. ~ 232 _ = 1242 .. . ~ 2
is that (1+v2a )¢ = (1+v21 )<. This implies that Vo = -2/(1+a"). Thus

the condition of theorem 4.1.1 will be satisfied if

0
2 _ o~ U% ) ]—7(1-a2)

= _v = = .
]+a2 2 u 0) 1-y(]-a4)

4
This implies that vy = 1/(]+a2) in order for &0 to be optimal for
estimating 8o

Consider finally the problem of estimating 62 for the same example.
If P > 1/2, then the unrestricted optimal design

1 1 ]
t0 = 701 * 299 T 3% €
p

restriction. For

and hence is c-optimal under the design

< =, there are two relevant cases for estimating

o= 1

1

6,-
Suppose first that a2 > 1 - Zp]. For this case, it is proposed

that £y = P1Sg ¥ (1—p])(5_]+6])/2. As in example 4.3.1,

vy = _U(O) = p, - 1. Now sup |v'f(x)] = |v'f(0)] =1 - py. Also,

0 2 1 G 1

1
because o° > 1 - 2py, max [V F(x)] = [v'f(1)] = py <1 - py. Thus
. - 2

max f[V'f(X)]ZdE(X) = P1(]-P]) + (1‘p])p$ = P1(1-D]) = j[V f(x)] dEO(X).
EEEX x

Hence theorem 4.1.1 implies that £o is c-optimal.

The remaining case is that o’ <1- Zp]. For this case, it is

proposed that g, = py&y + (1-py)lv(s, +6_ ) + (1-y)(s_y + §y)1/2.

Then v, = -uéo) = (py=1)[1-v(1-e®)].  Now
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1

1
max {(x2+\~/0)2dg(x) = [P+ 2deg(x) only iF (aP+7g)? = (1+9,)°.
g - -1
" Thus QO = —(1+a2)/2. Hence theorem 4.1.1 implies that &0 will be

c-optimal if (1+a2)/2 = —VO = (]-p])[]-y(1—a2)]. That is,
y = (T—ZP]—az)/Z(]-az)“-p]). It is readily seen that 0 <y < 1 and

hence that £0 is optimal for estimating 6, when a2 <1- 2p].

4.5 The Marginal Restriction Problem

Recall that for the marginal restriction problem, X =.Z] x xz and
a measure gf on X, is prescribed. Also,
e = (£]e(Axx,) = g5(A) for all Borel sets A< x;}. The following

corollary of theorem 4.1.1 is appropriate to the present restriction.

Corollary 4.5.1: £o is c-optimal for the marginal restriction

problem if and only if there exists v such that v'c=1 and

% gax{?/'f(x],xz)lzdif(ﬁ) =7£ 9{ [V FExy 2x,) 12dEg (x, [ %, )dex (%)
1 %2 172

= min [ [ Dv'F(xgax)1dEg(xy xg )d 4 (xp)
vie=lz4 %,

Proof: The corollary is merely a translation of theovem 4.1.1 with

dgo(x],xz) = dgo(lex])dgf(x]) and

max [ f [Q'f(x],xz)]zdg(lex])dg?(x])
= Z1 Zz

- ] Eaxm'f(x],xz)]zdgo(x2|x])dg¢(x]).
172
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The following example will illustrate the use of corollary 4.5.1.

Example 4.5.1: letx = [-1,1] x [-1,1] and

- 2 2 ) . . . _
f(X],Xz) = (1,x],x],x2,x2,x]x2) . For purposes of estimating the inter
action coefficient, ¢ = (0,0,0,0,0,1)'. In the unrestricted setting

that = = the c-optimal design obtained by Kiefer and Wolfowitz ('59)

2y
is dé(x],xz) = dé(x])dé(xz), where £ = %(6_]+61). Under the marginal
restriction, it will now be shown that dgo(x],xz) = dg?(x1)d§(x2) is
c-optimal.

It will be convenient to employ the notation that
fo(x],xz) = (1,x],x§,x§)‘ and vg € R, Thus
f(x],xz) = [fO(Xl’XZ)I’ Xo s x1x2]' and v = (vé,y,1)' for any v such

that v'c=1. Now

min [ [v'f(x],x2)]2dgo(x2[x])dg¥(x])

v'ic=1 Ly Zo
N 2.2 2 . 2.2
= min [ f{v(‘)fo(x],xz)fo(x],xz)'vO +yTXG F 2yxyx5 + X7X5
VasyY =1 -1
0

+ 2yv6f0(x],x2)x2 + 2v6f0(x],x2)x]x2}dgo(lex])dg?(x])

1 1

>min [ [{0 +vx§(y+x1)2 +0 + O}dgo(lex])dgf(xl)
y -1 -1
=U2"11"a
1
where each up = [x dET(Xl)' The inequality results because
-1

véfofévo > 0. Also, the components of fO(Xl’XZ) are orthogonal

to X5 and to X1X5 with respect to g0 It is also seen that
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V= (0,0,0,0,—p],l)‘. Thus

1
f max[@'f(x],xz)]zdaf(x]) [ max [—u]x2+x]x2]2dgo(x2]x])dg?(x])
Z] xz "] -1§_X2_<_]

il

2
H2 T
so that the condition of corollary 4.5.1 is satisfied and go is c-optimal

for this example.
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