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Abstract

For samples with the design points occuring as a Poisson process or having
a uniform distribution, the wavelet method of block thresholding can be applied
directly to the data as though it was equispaced without sacrificing adaptivity
or optimality. When the underlying true function is in certain Besov and Holder
classes, the resulting estimator achieves the minimax rate of convergence. Simu-
lation results are examined.

1. Introduction

Wavelets have been shown to be very successful in nonparametric function esti-
mation. Specifically, they excel in the areas of spatial adaptivity, optimality, and low
computational cost. Typically, wavelet analysis is performed through the use of term-
by-term thresholding of wavelet coefficients, such as the VisuShrink method of Donoho
and Johnstone (1994). There, a noisy signal is transformed into empirical wavelet coef-
ficients by the discrete wavelet transform, these coefficients are denoised by comparison
with a specified thresholding rule, and the underlying function is estimated by applying
the inverse discrete wavelet transform to these denoised coefficients. This method is
adaptive and is within a logarithmic factor of the optimal minimax convergence rate
over large classes of Besov functions.

Hall et al. (1999) proposed a method of wavelet analysis whereby the optimal
minimax convergence rate is attained without the logarithm penalty found in the term-
by-term methods. Using block thresholding, where the empirical wavelet coefficients
are thresholded in blocks rather than individually, they achieved this optimal rate and
maintained adaptivity over a large class of Holder functions. By looking at coefficients in
blocks rather than individually, more precise comparisons between the coefficients and
the threshold is allowed, resulting in improved rates. Cai (1998) has extended this idea.
Using a James-Stein thresholding rule, he has shown that this block-thresholded wavelet
estimator attains the optimal convergence rate from both a global and local estimation
perspective. A specific block length and threshold value are established that attain these
rates. Additionally, this estimate is easy to implement and has a low computational cost
of O(n).
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The above methods have been developed for data that is equispaced. Little em-
phasis has been placed on sample data that is not equispaced, however. Cai and Brown
(1998) investigated wavelet methods on samples with fixed, nonequispaced designs via
an approximation approach. They showed that applying the methods devised for equis-
paced data directly to nonequispaced data can lead to suboptimal estimators. They then
proposed a method that was adaptive and near optimal. Hall and Turlach (1997) used
interpolation methods to deal with samples with random design. Unfortunately, these
methods are much more complex from a computational standpoint than their equispaced
counterparts.

Cai and Brown (1999) have also examined convergence rates when the unknown
function is in a Holder class with exponent « and the positions of the sample points are
distributed as independent uniform random variables. Using term-by-term thresholding,
they showed that the equispaced wavelet method can be directly applied to the nonequi-
spaced data without a loss in the rate of convergence, i.e., to within a logarithmic factor
of the optimal convergence rate of n~7%1. This method maintains the computational
efficiency and simplicity of the equispaced algorithm.

In this paper, it is shown that these results of Cai and Brown (1999) for uniform
design can be improved upon for Holder classes and extended to many Besov classes
through the use of block thresholding. Additionally, when the sample points occur as
a Poisson process, the same optimal rates are attained. Adaptivity is kept, and the
computational cost remains low since the equispaced algorithm is used.

In Section 2 of this paper, the method of thresholding the wavelet coefficients
is stated, and the theorems on convergence rates are put forth. Section 3 discusses
simulation results and section 4 contains the proofs.

2. Methodology
2.1 Wavelets

¢ and v will represent the father and mother wavelets, respectively. Both are

assumed to be compactly supported. Let ¢, and 1,1, be the translations and dilations
of ¢ and :

din(z) = 202¢(2z — k),

Yin(z) = 2%z — k).
In this paper, wavelets periodized to the interval [0, 1] will be used. The set
(B b =1,..,2°U{yl .5 > jo,k=1,...,27}
is an orthonormal basis of L?[0, 1], where

@) = ) aulz—1),

l=—0c0

@) = D bz -1,

l=—00
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for z in [0,1]. These periodized wavelets will be used for the rest of the paper with
the superscript suppressed. For further simplicity, the functions to be estimated will be
assumed to have domain of [0, 1], also. Minimal changes are necessry if the period of
the wavelets or the support of the functions is changed to something other than [0, 1].

The wavelet coefficients for the discrete wavelet transform of a function f are the
usual inner product:

Eix = (f, b,
O = (f,%jr)-
Hence, f can be expressed as an infinite series
270 oo 27
F@) = Giorion(@) + D> Oathiu(a).
k=1 j=jo k=1

In terms of resolution, the ; coefficients represent the coarsest, smoothest por-
tions of f, and the 6;; are the coefficients representing the detailed structure of f.

2.2 The Estimator

Suppose a noisy signal is received with an unknown underlying function f. We
assume the noise is normally distributed with mean zero. The observed signal gives rise
to a bivariate vector consisting of the signal arrival time and the signal’s value at this
time:

{(z1, 1), (@2, 92), - -+, (Zn, ) },

where y; is

v = f(x;) + oe;, (1)

1 =1,2,...,n, and the ¢;’s are independent, standard normal random variables. The
parameter o is constant and known. In much of the literature, n is constant and the
z;’s are equidistant apart. For example, z; = %, t=1,2,... ,n. Here, two cases will
be considered. First, the sample points are uniformly distributed over the interval [0, 1]
and independent of the ¢;’s, and the number of points in the interval is fixed. Second,
the sample points follow a Poisson process and independent of the ¢;’s, and the number
of points in the interval is random.

When estimating f by f , the goal is to find an estimate with a small mean inte-
grated squared error:

B|lf - flI5-
By ordering the sample points and performing the equivalent reordering of the y;’s
and g;’s, the signal now looks like

Y = f(s:) + o¢;.

In the uniform case, the s; are the ordered, uniform random variables Z@), and {1 =
1,2,...,n. In the Poisson process case the s; are the arrival times, and 1 =1,2,..., N,
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where N is the number of arrivalsin [0, 1]. Given N = n, the arrival times are distributed
as ordered uniform [0,1] random variables, so the following discussion will be restricted
to this case.

The observed data vector is now (using the appropriately relabeled y;’s)

{(x(l)) yl)) ('T(Z)a y2)a sy ("L‘(n% yn)}

These randomly spaced data points will be treated as equidistant in the wavelet
algorithm. Each z(; will be replaced with its expected value, ——. The data vector can
then be viewed as though it were sampled at the equidistant pomts

Warrn) () o (From)

Provided that n = 27, the wavelet algorithm can be applied to the vector
Y = {Y1,%2,-.. ,¥s}. Since in the uniform design case the number of points is known,
n can be assumed to be of this form. In the Poisson case, if n # 27, the signal will
be extended to the next multiple of 2 by reflecting the signal abouts its endpoint. The
underlying, unknown function is then assumed to be extended similary on 1,1+ ]
where k = 27 — n is the number of points added to the signal.

Let

A - - ~ 7 0 0 0 A !
0= (fjol,fjoz, cee )€j021'0a9j01, 9j02, s a0j02jo> cee 79J—1,170J—1,2a <o ,HJ—1,2J—1)

be the discrete wavelet transform of n='/2y. The éjok are the empirical wavelet coeffi-
cients of the father wavelet corresponding to the coarsest resolution level. They will not
be thresholded. The 0316 are the empirical wavelet coeflicients from the mother wavelet,
and represent the detailed structure of the wavelet expansion of f.

Usually, the thresholding at this point is done on a term-by-term basis. Each co-
efficient is compared against some threshold and the coefficient is kept and scaled or
discarded (set to 0) depending on whether it is larger or smaller than the thresholding
value. For example, in Donoho and Johnstone’s VisuShrink algorithm with the soft
threshold, each coefficient is compared to o4/2n—1logn. This method has its draw-
backs, however. The size of the opt1mal threshold is n™z. But, the error in estimating
the coefficient is also of size n=%. Therefore, accurate thresholding with the optimal
threshold is not possible. This difficulty is avoided by introducing the logarithm term
seen in the soft threshold above. Unfortunately, this introduces a factor of logn in the
convergence rate. See Hall et al. (1998).

Instead of term-by-term thresholding, the ﬁjk are thresholded in blocks using
the James-Stein threshold. At each resolution level j, the ij are grouped into non-
overlapping blocks of length L. Let Bj, be the indices of the 0Jk in the bth block in
resolution level j. The James-Stein threshold rule is

~ ALo? ~
Ok = <1 - ) “ ik,
n ZzeBﬂ, ji

for all k in the bth block of resolution level j. In effect, this threshold compares the
average bias of the coefficients in the block with a multiple of the variance of a coefficient.
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It keeps all coefficients in a block (after scaling them) whenever their average bias is larger
than the variance of the coefficient, otherwise the entire block’s coefficients are set to 0.
By pooling the information of neighboring coeflicents together, a better decision is made
in terms of which components to retain. This added information allows the improvement
in the convergence rates. Cai (1998) has shown that the optimal rate of convergence for
equispaced samples is attained when L = log(n) and A\ = 4.50524.

The function f (or the extended version of f in the Poisson case) is then estimated

by
2J0 2f0 J-1
F@) =" Giortion(®) + D> pthin(a).
k=1 i=j0 k=1

In the Poisson process case, N could be any non-negative integer. To avoid com-
putational problems, the estimate of f above is valid for any N € {5,6,...,2u}, where
p is the rate of the process. For other values of N, we set f to 0. The upper limit may
be arbitrarily raised without affecting the results of the following theorem. The lower
limit of 5 is set in order to avoid calculating the trivial wavelet transform on the data
when using the Symmlet ”s8” wavelet. Other wavelets will require modifications of this
lower bound. |

The rate of convergence of f to f is the main result of this paper.

Theorem 1 Suppose the sample points follow a Poisson process with rate yu > 0 and the
sample {(z1,11), (2, Y2), . . . } is collected with y; = f(z;) +oe; as in (1) above. Further,
¥ has r vanishing moments, a € [1,7],2<p< 00, 1 <g< 00, and 0 < M < co. Then
for f as constructed above,

2 2
sup E||f — f|i; < Cp~ 1.
feFg (M)

Theorem 1 impies that for all functions in F (M), to be defined in the section 2.3, data
sampled as a Poisson process may be treated as equispaced data without a loss in the
rate of convergence. An easy consequence of theorem 1 is the following (A%(M) will be
defined in section 2.3):

Corollary 1 Under the conditions of theorem 1,

N .20
sup E|f - fll3 < Op~m=h.
feax(M)

If the samples are not following the Poisson process, but are instead uniformly
spaced throughtout the interval [0,1], similar results hold:

Theorem 2 Suppose the sample {(x1,v1), (Z2,Y2), .- , (Tn,Un)} 48 collected with y; =
f(z;) +o¢€; as in (1) above. Further, v has r vanishing moments, o € [3,7],2<p< oo,
1<g¢< o0, and 0 < M < oo. Then forf as constructed above,

sup  E||f — f|} < Cnm,
feFg (M)



Corollary 2 Under the conditions of theorem 2,

sup E||f - f|3 < On i,
feAax(M)

Corollary 2 shows that by using block thresholding on Holder spaces, the rate of
convergence has increased in comparison to the term-by-term thresholding method of

20
Cai and Brown (1999). In that case, the rate is O <(13§Lﬂ) 2"‘“) :

2.8 Function Spaces

In order to define the function space Fg (M), two other spaces are needed. The

first, and more general, of the two is the Besov space By, where 0 < p,q < co and

a > 0. A function f is said to be in this space if its Besov norm is finite:

“f”Bg‘,q < 09,

((/Owﬁ (lst+m)- f(-)llm)qdhf, 1<oo,

o L C D) = Ol

 0<h he ’

where, for 0 < o < 1,

1£1lg, = [I£llzs + S

q = 0.

Fora>1,a=|al+s50<s<1,

L]
1£llBg, = > 1F™™||ss,-
m=0

The Holder space A® is a special case of a Besov space. Specifically, A® = B, -
This paper considers functions whose Besov (or Hélder) norms are bounded. For any
0 < M < oo, we define the Besov or Holder ball as:

By (M) ={f:Ifllzg, < M},

p.q —

A (M) =A{f : | flla= < M}.

Wavelet coefficients for functions in Besov spaces have the property that the Besov
norm of the function f can be represented as a sequence norm in terms of its wavelet

~ ~ ~ !
coeflicients (see Meyer (1990)). If f € BZ (M) and © = {fjml,... v &jo.2101 o1, - - } is
the vector of wavelet coefficents of f, then

1

(E;ijo <2j(a+%~%) (Zijzl |9jk|p> %>4> ' , <00

1
i 1_1 j )
Supjs, 2(41375) (T 1 0 )’ g = oo.

Ifllsg, =
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When dealing with the coefficients of a Besov function, we will use the notation g (M)
to refer to the space.
Define F} (M) to be

20
Fy (M) = By (M) N A%+ (M).
Since B2, (M) C A*"/?(M), when o > %, the assumption that F' (M) be in A%(M)
only requires an increase in the Holder exponent of

<1 2042——01)
p 20+1),

So for many cases, the assumption that f be in A%(M ) is redundant.

3. Simulation

To compare the efficiency of the block estimator under the different sampling de-
signs, it was run on equispaced, uniform, and Poisson process samples and the results
were compared. Also, the block estimator was compared to the VisuShrink estimator
with universal term thresholding on uniform distributed sample points.

The test, functions used are those specified in Donoho and Johnstone (1994). These
eight functions represent varying degrees of spatial inhomogeneity. Sample sizes ranged
from n = 512 to n = 8192, and a signal-to-noise ratio (SNR) of 5 was simulated. For
the Poisson case, simlulations were run for u taking the same values as n above. Each
of the functions has been normalized to give a standard deviation of 10 before noise
was added. The MSE was estimated using 200 replications. In the Poisson case, this
is equivalent to observing the process for 200 intervals, and estimating the function on
each interval. The Symmlet ”s8” wavelet was used. The block length was set to the
greatest dyadic integer less than or equal to log(n), and the number of levels was fixed
to ensure that the block length would evenly divide the number of coefficients at each
level. Additionally, the number of coeflicients at the coarsest level is the same for all n.
Plots and formulae of the test functions are in appendix A.

Table 1 shows the results of the simulations. For the block estimator, the uniformly
spaced estimate (BU) and the equispaced estimate (B) are not significantly different
( = 0.05 significance level) in five of the 40 test cases. In two of the cases, the
uniformly spaced estimate outperformed the equispaced one, and in the remaining cases,
the equispaced estimate is better. In no instance does the uniformly spaced estimate
have more than twice the MSE of the equispaced one. And, in general, the percentage
difference between these two estimates tends to decrease as n increases. The block
estimator performed least well on the ”dopppler” function.

The estimator performs equivalently on the Poisson (BP) and uniform (BU) designs
with the exception of the "heavisine” and ”doppler” functions. Here, the MSE for the
Poisson case is never more than 11% above the uniform case. This is not surprising
since the conditional Poisson samples are equivalent to the uniform samples. The main
differences noted for "heavisine” and ”doppler” are most likely due to a few instances of
low numbers of events in some of the 200 intervals simulated.



The block estimator (BU) compares quite favorably to the VisuShrink estimator
(VU) for uniform distributed sample points. The block estimate has a lower MSE in
36 of the 40 cases and a higher one in four cases. For all test functions, the percentage
difference between the estimators increases in favor of the block estimator as n increases.

The block estimate is generally better than the VisuShrink estimate on equispaced
samples. The block estimate is better in 37 of 40 cases, not significantly different from
VisuShrink in 1 case, and worse in 2 cases (”corner” and "heavisine” functions). In these
two instances of VisuShrink outperforming the block estimator, it is better by no more
than 7%.

In the table, the difference is set to zero when the MSE’s are not significantly
different at the 95% confidence level.

Figure 1 shows some examples of the reconstructions. The dashed line is the
actual function, the solid line is the estimate. The visual quality of the reconstructions
is comparable for both cases, though the uniformly spaced reconstruction shows more
oscillating behavior than the other due to the uneveness of the sample point placement.
For these functions, n = 1024 and a signal-to-noise ratio of 5 was used.

Equispaced Design Uniformly-spaced Design
= =
o o
2 =
§ §
0.0 0.2 0.4 067 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Heavisine Heavisine
Equispaced Design Uniformly-spaced Design
=] 8
8 &
S 2
(=] o
‘C_> o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Blocks Blocks

Figure 1: Reconstructions of Functions.



Function
n B BU BP A\’ VU BvsBU BUvsVU BvsBP BUvsBP BvsV
Blip
512 0.60 0.63 063 0.86 0.91 5% -31% 5% 0% 43%
1024 0.3¢ 0.35 0.36 0.59 0.61 5% -42% 7% 0% 75%
2048 0.20 0.21 0.21 0.37 041 9% -49% 5% 0% 91%
4096 0.11 0.11 0.12 0.25 0.27 8% -58% 10% 0% 139%
8192 0.06 0.06 0.06 0.17 0.17 0% -64% 4% 0% 170%
Blocks
512 3.02 3.02 3.05 5.27 5.33 0% -43% 0% 0% 74%
1024 1.85 1.85 1.83 3.69 3.85 0% -52% 0% 0% 100%
2048 1.15 1.09 1.07 256 2.67 -5% -59% -7% 0% 123%
4096 0.64 064 064 172 1.82 0% -65% 0% 0% 169%
8192 0.37 037 037 1.16 1.20 -2% -70% -1% 0% 211%
Bumps
512 315 324 329 9.43 8.33 0% -61% 4% 0% 199%
1024 1.66 1.98 2.01 592 6.03 20% -67% 21% 0% 258%
2048 093 121 120 3.78 4.01 31% -70% 29% 0% 307%
4096 051 0.70 0.70 230 251 38% -72% 38% 0% 354%
8192 029 038 039 140 1.51 35% -75% 35% 0% 392%
Corner
512 040 051 0.51 0.38 0.44 27% 17% 27% 0% -6%
1024 0.20 0.28 0.28 0.22 0.25 39% 10% 38% 0% 8%
2048 010 0.14 014 0.12 0.15 4% -5% 46% 0% 27%
4096 0.05 0.07 0.08 0.08 0.10 52% -25% 57% 0% 60%
8192 0.03 0.04 0.04 0.05 0.06 40% -36% 48% 6% 73%
Doppler
512 1.07 213 211 285 3.90 99% -45% 98% 0% 166%
1024 0.68 1.21 121 1.88 2.54 78% -52% 78% 0% 177%
2048 0.38 0.65 0.67 1.20 1.59 70% -59% 73% 0% 212%
4096 022 034 034 0.80 0.99 56% -65% 56% 0% 263%
8192 0.12 0.18 0.18 0.51 0.60 51% -70% 51% 0% 335%
Heauvisine
512 059 074 0.82 0.55 0.62 26% 19% 40% 11% -1%
1024 040 045 048 0.40 043 14% 6% 21% 7% 0%
2048 0.24 026 028 0.29 0.28 6% -9% 16% 10% 21%
4096 0.14 0.15 0.15 0.21 0.20 5% -24% 9% 1% 46%
8192 0.08 0.08 0.09 014 0.13 7% -37% 11% 3% 2%
Spikes
512 1.05 1.75 1.80 2.07 3.34 67% -48% 1% 0% 97%
1024 056 0.96 096 1.38 2.11 2% -55% 2% 0% 148%
2048 0.33 0.50 050 0.90 1.28 50% -61% 50% 0% 173%
4096 0.18 0.26 026 059 0.75 38% -66% 38% 0% 220%
8192 0.09 013 0.13 0.38 044 39% -711% 40% 0% 315%
Wave
512 098 146 149 2.23 2.56 50% -43% 52% 0% 128%
1024 0.39 0.66 0.71 1.47 1.65 70% -60% 83% 8% 281%
2048 0.18 0.31 0.34 0.85 1.00 69% -69% 87% 10% 369%
4096 0.10 0.16 0.17 0.48 0.59 61% -73% 2% 7% 389%
8192 0.06 0.09 0.10 027 0.34 46% ~73% 54% 5% 339%

Table 1: Mean-squared errors from 200 replications.




4. Proof

Before the main theorems are proved, some preliminaries are necessary. First, a
result about the order statistics of the uniformly spaced sample points is stated.

Lemma 1 Let z; be independent, uniform(0,1) random variables. Let q) < z(z) <

. < Z(ny be their order statistics. Then xy is a Beta(k,n — k + 1) random variable

. & . (nt+1)k—k?
with mean 37 and variance (SR

The following result from Cai (1998) will also be needed.

Lemma 2 Suppose 0, € ©5 (M) and

y]k:9]k+ Uejk)j2j01k21a27--'72j7

1
v/n

where z;, are iid standard normal random variables. Let

0'\ )\LO’2 Ly
ik — iks
’ n ZzEB b y]z ?

be the result of applying the James-Stein threshold rule to the y;;. Then
E||f - 9])3 < On =1
Lemma 3 Let f be in Bz‘f’q(M),p > 2,9 > 1 and 0;; be the wavelet coefficents. Then

co 2
S5 8, < one
j=J k=1
Proof: Using the Besov sequence norm and the inequality

lzll,, < m*=1 ],

for x € R™, u < v, we have

27
65 = ;15 < [0 oy, ]
k=1

This implies

co 27 fore]
SN, < M2 S -Py-rler-D < pprg-rve
i=J k=1 j=dJ

Since 27 = n, the proof is finished.
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Proof of theorem 2. Let f(z) = Zfil %yiqﬁ si(z) where y; are as in (1). Then

flz) = g (fJi + (%f(x(i)) - fJi> + 71_7—20@) ¢.i(z)

2J0 0
=)~ (Giok + Viok + Mjok) Biok ( Z D O+ G+ S) Ps(a),
k=1 j=jo k=1

where ;x and §;; are the coefficients for Zfil iok®1i(%), Vjor and (i are the co-
efficients for Zfil (% flza) — € J’i) #si(z), and njor and &, are the coefficients for
> Tr0€ii(x).

Let &jor = &jok + Vjok + Mjor e the coarse coefficients. In our estimate of f, these
will not be thresholded. Let ¢ ie = Ojk + Cjr + 0j. Since the Wa,velet transform is an
orthogonal transform when n is a power of 2, ¢/ e ~ Nk + G, Z ) Applying the
James-Stein threshold with optimal A to ¢/ i yields Ojk The estimate of f then is

2J0 J-12/-1
z) =Y Gordion(®) + D D Oithyi(a)
k=1 J=jo k=1
and the error is
A 270 ~ J-1 27 1)
E\f = fl3 = Bok — &ot)? + ZZ (G5 — 03)" + Z 05
k=1 J=jo k= j=J k=1

From lemma 3,

27

iZﬁ < On™% < Cn i, 2)

j=J k=1
From lemma 2, with X = (Tay, T@), - Tw),
J-1 27 A J-1 27
> Bl -0 <2EgE 5>, [(ij — (O3 + Gir))? + ka]
J=jo k=1 j=jo k=1
A J—1 27
<2E 0 — O3 + G)l3 + 2Bz, Y > G 3)
J=jo k=1
\ J-1 27
SOn™=31 4285 3> G
J=jo k=1
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And, since n;,; ~ N(0, ‘;—2) due to the othogonality of the wavelet transform,

2Jo 2jo
Y Bk — &) =D Bz Bz Wiok + mjok)?
k=1 k=1
(4)
0_2 9jo
=2"—+ Bz Y wir)’

k=1

Using (2), (3) and (4),

E||f - fll; < Cn™ %% + CEg,

Z VJok ?+ ZZCJZk} . (5)

J=jo k=1
Since Zk ° Wiok)? + Z =0 Z = 21221 (ﬁf(w(i)) — gﬁ)z,(5) becomes
A 2e 27 1 9
BIIf - fIE < On~%% + CE g, (% F (o) — gjz.) | ©
i=1

The theorem will be proved once we have shown the following lemma.

Lemma 4 If f € F2 (M), a € [3,7],2<p < 00, and 1 < g < 00, then

N
(X) Z ( x(z £Jz> < C (ﬁ) .

Proof: Assume the range of ¢ is contained in [-R, R] and ¢ = co. Then

< %f(w@)) - / " F )bl dy

R
2t

1
‘ﬁf(m(i)) — &5

KR
n

N / (Flew) — 1())dssy)dy

A
_—
—N—




Therefore,

27 1 2
E s (——f(xi)—ﬁz)
(X); J/n (%) J

| n T AmID z 2
<E(X)Z/ . [f(m(i))_f <y+n+1>:| dy

i=1 n R n(n+1)

<2Ey, Z/n e [f(z@) — fly+ -'L'(i))]zdy (7)

n n(n+1)

}13-'—77. n¥1 ) 2
+2E(X)Z/ ( _ ) [f(x(i) +y)—f <y+_L>] dy.

=1 n+n(n+1)

To bound the first term on the right side of (7), note that

oy s 2’ 1 %
mZ / i o) = fo+mo) a3 [ [ 150 flu ) dude,

n n(n+1)

where the z; are now independent uniform(0,1) random variables, no longer ordered.
Applying Fubini’s theorem, and using the properties of the Besov function norm,

Z / / £y + ) dyd;

R4+1

< Z / o / @) — £+ 20)] dasdy

z (/01|f($z')—f(y+zvi)|pdx,->pdy (8)

R+1

SM2’I’L/ " y2(a/\1)dy
_R1

Since f € A%t (M), the second term on the right side of (7) is easily bounded by lemma
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1 and Jensen’s inequality:

. 2
n(n+1) 1
(X)Z/ [ $(i)+y)—f(y+n+1>] dy

n -n.(n+1

2 LEf1 i\ 22
SE(X)Z/_gﬂKz(i)—nH) } dy

i=1
. 2
.'L" :
< @~ n—l—l)

=¢ <%> Z (oﬁTnl)(n; 2)) N

2
S Cn_ 20:;—1

2¢
2a+1

( )ZE(X (9)

Since @ > 1/2 implies 2(a A 1) > 2a/2a+ 1, lemma 4 is proved for ¢ = oco. For
1 < g < o0, the same results hold because of the inclusion By (M) C By (M).
The proof of theorem 2 now follows from (6) and lemma 4.

Proof of theorem 1. Let N be the number of sample points in the interval [0, 1].
Then N is distributed as a Poisson(x) random variable. Recall that if N is smaller than
5 or larger than 2u, then f is set to zero. If N is not a power of 2, the signal will be
reduced rather than extended to a dyadic integer to simplify the proof. In applying
the estimator to data, however, the signal will be extended as described in section 2.3.
Given N, the arrival times z(;) have the distribution of N ordered uniform statistics.
Randomly permuting these times yields a set of N i.i.d. uniform[0,1] random variables.
Let N* = 27 < N < 27+, the smallest dyadic integer less than or equal to N. Randomly
choose N* of the i.i.d. uniforms, and order them. The estimator will be applied to this
new, smaller signal vector of N* ordered uniform random variables. By theorem 2 and
the fact that f € L?(M),

2M*? N <5 N > 2u,

B(If - fI3IN) <
2a

CN* %2+1, N =5,6,...,2u.

Since N < 2N*,

2M? N <5,N > 2yu,
B(If - fIIN) <
2¢
CN™ %+, N=56,...,2u.
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This implies that
21 .
E(E(If - fI31 N)) <2M*P(N <5,N > 24) + Y Cn %5 P(N = n)
n=>5

For a Poisson(u) random variable, P(N < 5, N > 2u) < Cp~!. Therefore,

B(E(If - fIZIN)) <O+ Y Cn =¥ P(N =)

o0
=5

n

ad 2a P N =
< C,u'_l + (1 - e_I—L) Z Cn™ %a+ '—1(_“—6_:’,)

n=1

<Cut+C-E(N"%=% | N >1)
<Cut+C(E(N'|N> 1))%%
< Cu‘%.

Appendix

The eight test functions are displayed in figure 2. The formulas for ”doppler”,
"heavisine”, "bumps”, and "blocks” can be found in Donoho and Johnstone (1994).
The rest are given below. In the simulations, these formula were modified by a constant
to give a standard deviation of 10.

Spikes:

fz) = 15.6676[6"500(”’_0'23)2 + 9¢—2000(z—0.33)?
+ 46—8000(3:—0.47)2 + 36—16000(:1:—0.69)2 + e-—32000(:c—0.83)2]

Blip:
f(x) = (0.32+ 0.6z +0.3¢71 009" 11 1 (z) 4 (—0.28 4 0.6z + 0.3 101" I ¢ ()
Corner:

f(z) = 102%(1 — 42”) Lo 5 + 3(0.125 — £*)z*I( 5 )(z) + 59.4432(z — 1)*[ 5.1 (z)

Wave:
: f(z) = 0.5+ 0.2 cos(4nz) + 0.1 cos(24mzx)

15



10 15 20 25 30 35 40

40 60

20

10

0 10 20 30 40 50 60

Blip Blocks
8
&
°
e
0.0 0.2 04 0.8 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Bumps Comer
o
°
e
o
&
8
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Doppler Heavisine
°
°
°
0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Spikes Wave
3
o
S
8
A 3
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 08 1.0

Figure 2: Test Functions
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